The mean, median, and mode are equal to 1. So among the choices, the first one is correct - mean = mode
Mean - an <em>average </em>of the given set of number; to find this, add the numbers and divide it by 11 (the number of given data)
= (-1 + -1 + 0 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 3) / 11
= 1
Median - the <em>middle or center</em> of the given set; to find this, arrange the numbers in numerical order, then get the center or middle number as the median
= <span>-1, -1, 0, 1, 1, 1, 1, 2, 2, 2, 3
= [</span><span>-1, -1, 0, 1, 1,] <u>1</u>, [1, 2, 2, 2, 3]
Mode - is the value that occurs most of the time in the given set; so obviously <em>number 1 occurred four times</em> so 1 is our mode
</span>
Answer:
represents the total perimeter of the table, and if x = 3 the lentgh of entire rubber bumper is 12 feet.
Step-by-step explanation:
Perimeter is defined as the sum of sides.
For a rectangle having dimension length 'L' and breadth 'B' Since, rectangle has two sides equal.
Perimeter of rectangle = 2 ( length + breadth )
Here, given rectangle has dimension
Length =
and breadth = 
Thus, perimeter of rectangle = 



Thus, perimeter of rectangle is
........(1)
Perimeter of rectangle , when x = 3,
Put x= 3 in (1) ,

Thus,
represents the total perimeter of the table, and if x = 3 the lentgh of entire rubber bumper is 12 feet.
Answer:
well if each edge is equal in that mean each side equal in length so each side is 4cm
Step-by-step explanation:
so
perimeter= all sides added together
4+4+4+4
=16cm
hope this helped
Answer:
Kindly check explanation
Step-by-step explanation:
The hypothesis :
H0 : μ1 = μ2
H1 : μ1 > μ2
Given :
x1 = 21.1 ; n1 = 53 ; s1 = 1.1
x2 = 20.7 ; n2 = 46 ; s2 = 1.2
The test statistic :
(x1 - x2) / √[(s1²/n1 + s2²/n2)]
(21.1 - 20.7) / √[(1.1²/53 + 1.2²/46)]
0.4 / 0.2326682
Test statistic = 1.719
The degree of freedom using the conservative method :
Comparing :
Degree of freedom = n - 1
Degree of freedom 1 = 53 - 1 = 52
Degree of freedom 2 = 46 - 1 = 45
Smaller degree of freedom is chosen ;
The Pvalue from Test statistic, using df = 45
Pvalue = 0.0462
Pvalue < α ; Hence, there is significant evidence to conclude that average age of Gorka student is higher than Yaphoa.