Answer:
Explanation:
We shall first calculate the velocity at height h = 575 m .
acceleration a = 2.2 m /s²
v² = u² + 2 a s
u is initial velocity , v is final velocity , s is height achieved
v² = 0 + 2 x 2.2 x 575
v = 50.3 m /s
After 575 m , rocket moves under free fall so g will act on it downwards
If it travels further by height H
from the relation
v² = u² - 2 g H
v = 0 , u = 50.3 m /s
H = ?
0 = 50.3² - 2 x 9.8 H
H = 129.08 m
Total height attained by rocket
= 575 + 129.08
= 704.08 m .
Object height 10cm is placed in front of plane mirror. The height of the image will also be 10cm as the height of image is same as height of object in the case of plane mirror
Answer:
a) 12.8212 N
b) 12.642 N
Explanation:
Mass of bucket = m = 0.54 kg
Rate of filling with sand = 56.0 g/ sec = 0.056 kg/s
Speed of sand = 3.2 m/s
g= 9.8 m/sec2
<u>Condition (a);</u>
Mass of sand = Ms = 0.75 kg
So total mass becomes = bucket mass + sand mass = 0.54 +0.75=1.29 kg
== > total weight = 1.29 × 9.8 = 12.642 N
Now impact of sand = rate of filling × velocity = 0.056 × 3.2 = 0.1792 kg. m /sec2=0.1792 N
Scale reading is sum of impact of sand and weight force ;
i-e
scale reading = 12.642 N+0.1792 N = 12.8212 N
<u>Codition (b);</u>
bucket mass + sand mass = 0.54 +0.75=1.29 kg
==>weight = mg = 1.29 × 9.8 = 12.642 N (readily calculated above as well)
Answer:

Explanation:
<u>Uniform Acceleration
</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
It's known a train moves from rest (vo=0) to a speed of vf=25 m/s in t=30 seconds. It's required to calculate the acceleration.
Solving for a:

Substituting:

