Answer:
To find the mass using density and volume we just multiply them against each other which causes ml to cancel and just leaves us with grams which represents how much the item weights.
![mass=density*volume](https://tex.z-dn.net/?f=mass%3Ddensity%2Avolume)
![mass=0.875\frac{g}{ml}*4.0\ ml](https://tex.z-dn.net/?f=mass%3D0.875%5Cfrac%7Bg%7D%7Bml%7D%2A4.0%5C%20ml)
![mass=3.5\ g](https://tex.z-dn.net/?f=mass%3D3.5%5C%20g)
Therefore, our final answer is that our pencil weight 3.5 grams
<u><em>Hope this helps! Let me know if you have any questions</em></u>
Bottom of the distillation flask
Explanation:
The solid in the mixture to be separate would be found at the bottom of the distillation flask.
Distillation is a separation technique for differentiating the components of mixtures based on the differences in their boiling points.
- Distillation is used to recover solvents from solution.
- The solutes are then left behind in the flask as the solvent boils out as vapor.
- The solution is boiled in a distillation flask to vaporize the solvent.
- The vapor is made to condense back into liquid by means of a condenser.
- The pure liquid called distillate is collected in the receiver.
- The solute which is the solid remains in the distillation flask
learn more:
Heterogeneous mixtures brainly.com/question/1446244
Pure substances brainly.com/question/1832352
#learnwithBrainly
The atomic number gives you the number of protons element x has. Since the mass of protons and neutrons are almost similar(around 1 amu), the mass number can be thought of as the sum of protons and neutrons. so if element x whose atomic number is 40 has a mass number of 82, then we know that 42 of those must be neutrons.
Answer:
x(t) = d*cos ( wt )
w = √(k/m)
Explanation:
Given:-
- The mass of block = m
- The spring constant = k
- The initial displacement = xi = d
Find:-
- The expression for displacement (x) as function of time (t).
Solution:-
- Consider the block as system which is initially displaced with amount (x = d) to left and then released from rest over a frictionless surface and undergoes SHM. There is only one force acting on the block i.e restoring force of the spring F = -kx in opposite direction to the motion.
- We apply the Newton's equation of motion in horizontal direction.
F = ma
-kx = ma
-kx = mx''
mx'' + kx = 0
- Solve the Auxiliary equation for the ODE above:
ms^2 + k = 0
s^2 + (k/m) = 0
s = +/- √(k/m) i = +/- w i
- The complementary solution for complex roots is:
x(t) = [ A*cos ( wt ) + B*sin ( wt ) ]
- The given initial conditions are:
x(0) = d
d = [ A*cos ( 0 ) + B*sin ( 0 ) ]
d = A
x'(0) = 0
x'(t) = -Aw*sin (wt) + Bw*cos(wt)
0 = -Aw*sin (0) + Bw*cos(0)
B = 0
- The required displacement-time relationship for SHM:
x(t) = d*cos ( wt )
w = √(k/m)