1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Norma-Jean [14]
3 years ago
10

How many seconds in a day? A hole day.

Physics
1 answer:
gizmo_the_mogwai [7]3 years ago
4 0
1 year<span> consists of 365 days. 1 day has 24 hours, each hour has 60 minutes and each minute has 60 </span>seconds. <span>1 day = (24 hours/day) × (60 minutes/hour) × (60 seconds/minute) = 86400 seconds/day

Hope that helped :)</span>
You might be interested in
An electron in a television tube is accelerated uniformly from rest to a speed of 8.4\times 10^7~\text{m/s}8.4×10 ​7 ​​ m/s over
stich3 [128]

Answer:

P=3.42×10^-6 J/s

Explanation:

From the kinematics of motion with constant acceleration we know that :  

vf^2=vi^2+2*a(xf-xi)

Where :

• vf , vi, are the the final and the initial velocity of the electron  

• a is the acceleration of the electron  

• xf , xi are the final and the initial position of the electron .

Strategy for solving the problem : at first from the given information we calculate the acceleration of the electron.  

Givens: vf = 8.4 x 10^7 m/s , vi, = 0 m/s , xf = 0.025 m and xi = 0 m  

vf^2 =vi^2+2*a(xf-xi)

vf^2-vi^2=2*a(xf-xi)

2*a(xf-xi)= vf^2-vi^2

          a = (vf^2-vi^2)/2(xf-xi)

Pluging known information to get :

a = (vf^2-vi^2)/2(xf-xi)

  = 1.411 × 10^17

From the acceleration and the previous Eq. we can calculate the final velocity of the electron but a new position xf = 0.01 m  

so,

vf^2 =vi^2+2*a(xf-xi)

vf^2 =5.312× 10^7

From the following Eq. we can calculate the time elapsed in this motion .  

xf =xi+vi*t+1/2*a*t

xf =xi+vi*t+1/2*a*t

  t=√2(xf-xi)/a

 t=3.765×10^-10 s

now we can use the power P Eq.  

 P=W/Δt => ΔK/Δt  

Where: the work done W change the kinetic energy K of the electron ,

ΔK=Kf-Ki=>1/2*m*vf^2-1/2*m*vi^2

P=1/2*m*vf^2-1/2*m*vi^2/Δt

P=3.42×10^-6 J/s

6 0
2 years ago
An isolated parallel-plate capacitor has a surface charge density. If the space between the plates is filled with a material of
anygoal [31]

Answer:

Explanation:

2\sqrt{34}

3 0
2 years ago
a body is moving with uniform acceleration, has initial velocity 45km/hr. and acceleration 20cm/s^2. find its velocity after 25
Eddi Din [679]
That’s hard wow!!!!!!
7 0
3 years ago
An example of constant velocity
pashok25 [27]
Some examples of constant velocity (or at least almost- constant velocity) motion include (among many others): • A car traveling at constant speed without changing direction. A hockey puck sliding across ice. A space probe that is drifting through interstellar space.
4 0
2 years ago
To visit your favorite ice cream shop, you must travel 490 m west on Main Street and then 920 m south on Division Street. Suppos
topjm [15]

Answer:

a) The magnitude of your average velocity during the 121 s is 8.61 m/s.

b) The direction of the average velocity is 61.9° south of west.

c) Your average speed during the trip is 11.7 m/s

Explanation:

Hi there!

a) The average velocity (a.v) is calculated as the displacement divided by the time it took to do such a displacement.

The displacement is calculated as the distance between the initial position and the final position:

Displacement = Δ(x,y) = final position - initial position

Let's consider that your initial position is the origin of our frame of reference and let's also consider that west and south are positive directions (+x and +y respectively). Then the displacement vector will be:

Δ(x,y) = final positon - initial position

Δ(x,y) = (490, 920) m - (0, 0) m = (490, 920) m

The average velocity will be:

a.v = Δ(x,y) / t

a.v = (490, 920) m / 121 s

a.v = (4.05, 7.60) m/s

The magnitude of the average velocity is calculated as follows:

 

The magnitude of your average velocity during the 121 s is 8.61 m/s.

b) To find the direction of the average velocity, we have to use trigonometric rules of right triangles. Notice that the x and y-components of the average velocity (vx and vy) together with the average velocity vector (v), with magnitude 8.61 m/s, form a triangle (see figure).

Also, notice that v is the hypotenuse of the triangle and that vx is the side adjacent to the angle θ while vy is the side opposite to θ.

Using trigonometry, we can calculate the value of the angle θ:

cos θ = adjacent side / hypotenuse

cos θ = vx / v

cos θ = 4.05 m/s / 8.61 m/s

θ = 61.9°

The direction of the average velocity is 61.9° south of west.

c) The average speed (a.s) is calculated as the traveled distance (d) divided by the time it took to cover that distance (t). In total, you traveled (490 m + 920 m) 1410 m in 121 s, then the average speed will be:

a.s = d/t

a.s = 1410 m / 121 s

a.s = 11.7 m/s

Your average speed during the trip is 11.7 m/s

5 0
3 years ago
Other questions:
  • What is water that travels across land that may pick up substances called
    10·2 answers
  • Application of a biot-savart law
    13·1 answer
  • A 1.0 kg object moving at 4.5 m/s has a wavelength of:
    12·1 answer
  • A 4.0kg block is suspended from a spring with force constant
    12·1 answer
  • Maximum voltage produced in an AC generator completing 60 cycles in 30 sec is 250V. (a) What is period of armature? (b) How many
    6·1 answer
  • A negatively charged object has?
    15·1 answer
  • Where would a boat produce the highest concentration of carbon monoxide?
    13·1 answer
  • What happens first when a star begins to run out of fuel?
    7·2 answers
  • A book is sitting on a table until I decide I needed more room sol pushed it 2 points
    12·1 answer
  • Examples for each different examples force affects​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!