1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
3 years ago
9

Please help me with my question ​

Physics
1 answer:
Mashutka [201]3 years ago
3 0

Answer:

Brownian motion and diffusion

Explanation:

Brownian motion: taking into consideration, SMOKE. when a burning fire is kindled, smoke is seen to move in the way or direction that is not straight but keep changing continuously ( in haphazard manner). Haphazard manner of smoke is an evidence that matter are made of molecules and are constantly in motion

You might be interested in
A 300 MHz electromagnetic wave in air (medium 1) is normally incident on the planar boundary of a lossless dielectric medium wit
Masja [62]

Answer:

Wavelength of the incident wave in air = 1 m

Wavelength of the incident wave in medium 2 = 0.33 m

Intrinsic impedance of media 1 = 377 ohms

Intrinsic impedance of media 2 = 125.68 ohms

Check the explanation section for a better understanding

Explanation:

a) Wavelength of the incident wave in air

The frequency of the electromagnetic wave in air, f = 300 MHz = 3 * 10⁸ Hz

Speed of light in air, c =  3 * 10⁸ Hz

Wavelength of the incident wave in air:

\lambda_{air} = \frac{c}{f} \\\lambda_{air} = \frac{3 * 10^{8} }{3 * 10^{8}} \\\lambda_{air} = 1 m

Wavelength of the incident wave in medium 2

The refractive index of air in the lossless dielectric medium:

n = \sqrt{\epsilon_{r} } \\n = \sqrt{9 }\\n =3

\lambda_{2} = \frac{c}{nf}\\\lambda_{2} = \frac{3 * 10^{6} }{3 * 3 * 10^{6}}\\\lambda_{2} = 1/3\\\lambda_{2} = 0.33 m

b) Intrinsic impedances of media 1 and media 2

The intrinsic impedance of media 1 is given as:

n_1 = \sqrt{\frac{\mu_0}{\epsilon_{0} } }

Permeability of free space, \mu_{0} = 4 \pi * 10^{-7} H/m

Permittivity for air, \epsilon_{0} = 8.84 * 10^{-12} F/m

n_1 = \sqrt{\frac{4\pi * 10^{-7}  }{8.84 * 10^{-12}  } }

n_1 = 377 \Omega

The intrinsic impedance of media 2 is given as:

n_2 = \sqrt{\frac{\mu_r \mu_0}{\epsilon_r \epsilon_{0} } }

Permeability of free space, \mu_{0} = 4 \pi * 10^{-7} H/m

Permittivity for air, \epsilon_{0} = 8.84 * 10^{-12} F/m

ϵr = 9

n_2 = \sqrt{\frac{4\pi * 10^{-7} *1 }{8.84 * 10^{-12} *9 } }

n_2 = 125.68 \Omega

c) The reflection coefficient,r  and the transmission coefficient,t at the boundary.

Reflection coefficient, r = \frac{n - n_{0} }{n + n_{0} }

You didn't put the refractive index at the boundary in the question, you can substitute it into the formula above to find it.

r = \frac{3 - n_{0} }{3 + n_{0} }

Transmission coefficient at the boundary, t = r -1

d) The amplitude of the incident electric field is E_{0} = 10 V/m

Maximum amplitudes in the total field is given by:

E = tE_{0} and E = r E_{0}

E = 10r, E = 10t

3 0
3 years ago
Which of the following is a chemical change?
klemol [59]

a). Water is still H₂O after it freezes.

b). Ice is still H₂O after it melts.

c). Wire is still Cu when it's bent.

d). Paper combines with the O₂ in the air, and turns into
     a lot of new compounds when it burns.

3 0
3 years ago
A dragster starts from rest and travels 1/4 mi in 6.80 s with constant acceleration. What is its velocity when it crosses the fi
Ahat [919]
<h2>Its velocity when it crosses the finish line is 117.65 m/s</h2>

Explanation:

We have equation of motion s = ut + 0.5 at²

        Initial velocity, u = 0 m/s

        Acceleration, a = ?

        Time, t = 6.8 s    

        Displacement, s = 1/4 mi =    400 meters

     Substituting

                      s = ut + 0.5 at²

                      400 = 0 x 6.8 + 0.5 x a x 6.8²

                      a = 17.30 m/s²

Now we have equation of motion v = u + at

     Initial velocity, u = 0 m/s

     Final velocity, v = ?

     Time, t = 6.8 s

      Acceleration, a = 17.30 m/s²

     Substituting

                      v = u + at  

                      v = 0 + 17.30 x 6.8

                      v = 117.65 m/s

Its velocity when it crosses the finish line is 117.65 m/s

6 0
3 years ago
A football punter accelerates a .55 kg football
Ronch [10]

Answer:

17.6 N

Explanation:

The force exerted by the punter on the football is equal to the rate of change of momentum of the football:

F=\frac{\Delta p}{\Delta t}

where

\Delta p is the change in momentum of the football

\Delta t=0.25 s is the time elapsed

The change in momentum can be written as

\Delta p = m(v-u)

where

m = 0.55 kg is the mass of the football

u = 0 is the initial  velocity (the ball starts from rest)

v = 8.0 m/s is the final velocity

Combining the two equations and substituting the values, we  find the force exerted on the ball:

F=\frac{m(v-u)}{\Delta t}=\frac{(0.55)(8.0-0)}{0.25}=17.6 N

5 0
4 years ago
The Moon's center is 3.9x10 m from Earth's center. The Moon is 1.5x10^8 km from the Sun's center. If the mass of the Moon is 7.3
nika2105 [10]

Explanation:

It is given that The Moon's center is 3.9x10⁸ m from Earth's center. The moon 1.5x10⁸ km from the Sun's center. We need to find the ratio of the gravitational forces exerted by Earth and the Sun on the Moon.

The gravitational force is given by :

F=\dfrac{Gm_em_m}{r^2}

It means F\propto \dfrac{1}{r^2}

So,

\dfrac{F_1}{F_2}=\dfrac{r_2}{r_1}

r₁ = 3.9x10⁸ km

r₂= 1.5x10⁸ km

So,

\dfrac{F_1}{F_2}=\dfrac{1.5\times 10^8}{3.9\times 10^8}\\\\\dfrac{F_1}{F_2}=\dfrac{5}{13}

Hence, the ratio of the gravitational forces exerted by Earth and the Sun on the Moon is 5:13.

3 0
4 years ago
Other questions:
  • When a boat is placed in liquid, two forces act on the boat. Gravity pulls the boat down with a force equal to the weight of the
    11·1 answer
  • How does one get 8.0 A? The answer is D
    15·1 answer
  • 2. What kinetic energy has a 1 tonne car travelling at 15 m/s?
    10·1 answer
  • Energy resources that exist in limited amounts and, fonts used, cannot be replaced except over the course of millions of years a
    12·1 answer
  • An electric circuit can have no current when a switch is
    14·1 answer
  • Practice with Density
    6·2 answers
  • Determine the inductance L of a 0.65-m-long air-filled solenoid 3.2 cm in diameter containing 8400 loops.
    6·1 answer
  • Is length a <br> vector,<br> scalar<br> ,both,<br> neither
    15·1 answer
  • A motorcycle stunt driver zooms off the end of a cliff at a speed of 41.9 meters per second. If he lands after 1.62 seconds, wha
    5·1 answer
  • 2) How much work is required to pull a sled 15<br> meters if you use 30N of force?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!