the answer is H is the cation
Explanation :
The general formula of an acid is represented as, in which 'H' is hydrogen cation and 'X' is a non-metal or a poly-atomic anion.
For example : etc.
All the acids produces hydrogen ion, in an aqueous solution while the base produces hydroxide ion, in an aqueous solution.
Answer:
(B) F⁻, HCOOH
Explanation:
(A) CH₄, HCOOH
(B) F⁻, HCOOH
(C) F⁻, CH₃-O-CH₃
The hydrogen bonds are formed when the hydrogen is found between two electronegative atoms such as oxygen (O), nitrogen (N) or florine (F).
O····H-O, F····H-O, O····H-N
(A) CH₄, HCOOH
- here methane CH₄ is not capable to form hydrogen bond with water
- formic acid HCOOH can form hydrogen bonds with water
H-C(=O)-O-H····OH₂
(B) F⁻, HCOOH
-both floride (F⁻) and formic acid can form hydrogen bonds with water
F····OH₂
H-C(=O)-O-H····OH₂
(C) F⁻, CH₃-O-CH₃
- dimethyl-ether CH₃-O-CH₃ is not capable to form hydrogen bond with water
- floride (F⁻) can form hydrogen bonds with water
F····OH₂
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:

The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)

Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M
The answer is 64.907 amu.
The atomic mass of an element is the average of the atomic masses of its isotopes. The relative abundance of isotopes must be taken into consideration, therefore:
atomic mass of copper = atomic mass of isotope 1 * abundance 1 + atomic mass of isotope 2 * abundance 2
We know:
atomic mass of copper = 63.546 amu
The atomic mass of isotope 1 is: 62.939 amu
The abundance of isotope 1 is: 69.17% = 0.6917
The atomic mass of isotope 1 is: x
The abundance of isotope 2: 100% - 69.17% = 30.83% = 0.3083
Thus:
63.546 amu = 62.939 amu * 0.6917 + x * 0.3083
63.546 <span>amu = 43.535 amu + 0.3083x
</span>⇒ 63.546 amu - 43.535 amu = 0.3083x
⇒ 20.011 amu = 0.3083x
⇒ x = 20.011 amu ÷ 0.3083 = 64.907 amu
Answer:
Energy is transferred from one object to another when a reaction takes place.
Explanation:
Energy comes in many forms and can be transferred from one object to another as heat, light, or motion, to name a few.
The answer could be It is a well known fact that energy can neither be created and nor be destroyed but can be transformed from one form to another.
Now talking about your example in a typical light bulb electrical energy is converted into light energy and heat energy. Now when the electric current flows through the conductor/filament in the light bulb,this would cause vibrations and the free ions are more likely to go to an higher energy level,and when the ions come back to their original state,the difference in the two energy levels is usually emitted as a photon,thus light energy is obtained and the heat energy is the energy dissipated as a result of flow of electricity through the conductor.
Anything that gets transformed into light energy or in better words ElectroMagnetic Energy would be a result of this.