1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
10

%20x%20%2B%203%20y%20%3D%2047%20%7D%20%5Cend%7Bcases%7D%20%5Cright." id="TexFormula1" title="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." alt="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." align="absmiddle" class="latex-formula">
Solve for x & y using MATRICES!! Help...​
Mathematics
2 answers:
Brut [27]3 years ago
3 0

\huge \boxed{\mathfrak{Question} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

First, write both the equations in its standard form.

8x+2y=46\\ 7x+3y=47

Now, write the equations in form of matrix.

\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)

Then, multiply the equation towards the left by using the inverse of matrix \left(\begin{matrix}8&2\\7&3\end{matrix}\right)

\sf \: inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

The product of the matrix & its inverse will be the identity matrix.

\sf\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

Now, multiply the matrices that lie on the left-hand side of the equal sign.

\sf\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

For the 2 × 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is ⇨ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right).

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Do the calculations.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Multiply the matrices.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)

Do the arithmetics again.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}  \\\frac{27}{5}\end{matrix}\right)

Finally, extract the matrix elements x & y & write them separately.

\large \boxed{ \boxed{ \bf \: x=\frac{22}{5},y=\frac{27}{5} }}

nata0808 [166]3 years ago
3 0

Hey!

\left \{ {8x~+~2y ~=~ 46} \atop {7x~+~3y~=~46}}\huge

<h2></h2><h2>Solve for x, and y using Matrices.</h2><h2 /><h2>\underline{EXPLANATION :\;}</h2><h2 />

Put the equations in standard form and then use matrices to solve the system of equations.

8x~+~2y=46, ~7x~+~3y=47

Write the equations in matrix form.

\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Left multiply the equation by the inverse matrix of : \left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right).

= \left(\begin{array}{ccc}46\\\\47\end{array}\right)\left(\begin{array}{ccc}x\\\\y\endarray\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right))\left(\begin{array}{ccc}46\\\\47\end{array}\right)

The product of a matrix and its inverse is the identity matrix.

\left(\begin{array}{ccc}1&&0\\\\0&&1\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Multiply the matrices on the left hand side of the equal sign.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

For the 2~x~2 matrix \left(\begin{array}{ccc}a&&b\\\\c&&d\end{array}\right)the inverse matrix is \left(\begin{array}{ccc}\frac{d}{ad-bc}&&\frac{-b}{ad-bc} \\\\\f\frac{-c}{ad-bc} &&\frac{a}{ad-bc} \end{array}\right) so the matrix equation can be rewritten as a matrix multiplication problem.

<h2>\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10} &&-\frac{1}{5} \\-\frac{7}{10} &&\frac{4}{5} \\\end{array}\right) \left(\begin{array}{ccc}46\\\\47\end{array}\right)</h2>

Multiply the matrices.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10}~x~46~-~\frac{1}{5}~~x~47\\\\-\frac{7}{10}~x~46~+~\frac{4}{5}~x~47 \end{array}\right)

Do the arithmetic.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{22}{5}~\\\frac{27}{5} \\\end{array}\right)

Extract the matrix elements x and y.

x = \frac{22}{5}, y = \frac{27}{5}

Hope It Helps...

Sorry, that I answer this question so late...

#LearnWithBrainly

\mathfrak{Jace}

<h2></h2><h2></h2><h2></h2><h2></h2>
You might be interested in
11 + (3)(9)
vodka [1.7K]

Answer:

B- In Step 2, the associative property cannot regroup addition and multiplication.

8 0
3 years ago
Read 2 more answers
What is the output of the function f(x) = x + 21 if the input is 4? When the input is 4, the output of f(x) = x + 21 is
notka56 [123]
To find the output when you know the input, just plug the input into the function.

x+21=4+21=25

The output is 25.

Hope this helps!
8 0
3 years ago
Read 2 more answers
A flower box is 3 ft. Long, 2 3/4 ft. Wide, and 1/2 ft. Deep. How many cubic feet of dirt can it hold? A. 4 1/8 B. 5 3/4 C. 6 1/
pochemuha

Answer:

The box can hold 4 1/8 cubic feet of dirt

Step-by-step explanation:

What we simply have to find here is the volume of dirt it can take

To get this, we have to multiply the dimensions of the box

We have this as follows

Volume or box = length * width * height

Volume of box = 2 3/4 * 1/2 * 3

Volume of box = 11/4 * 3 * 1/2 = 33/8 = 4 1/8 cubic feet

5 0
3 years ago
In Tayshia's pantry, there are bags of Cheetos and Doritos. The ratio of Cheetos to total bags of chips in her pantry is 9 to 16
erma4kov [3.2K]
It’s not enough information given
7 0
3 years ago
Can someone please tell me if I am correct?
Olin [163]

Answer:

ur correct

Step-by-step explanation:

3 0
2 years ago
Other questions:
  • Harry drives a delivery van and has several deliveries to make. He is in Horseshoe Bay and has a delivery to make in Highcliffe.
    7·2 answers
  • Which equation is equivalent to <br> X/ +11 = 15
    10·1 answer
  • A 16-cup bottle of fabric softener costs $16.80. What is the price per pint?
    5·2 answers
  • . Jacob drives at a rate of 20 miles in 4 hours. What is his unit rate? *
    6·1 answer
  • PLEASE HELPPPP WITH MATHH
    12·1 answer
  • Help me with these 2 questions
    13·2 answers
  • Question in picture help and explain pls
    5·1 answer
  • The area of Mark's laptop computer
    8·1 answer
  • I GIVE BRAINLIEST FOR EXPLANATION AND CORRECT ANSWER EXTRA POINTS
    11·1 answer
  • Use the order pairs to write a function rule. Give the tule in slope-intercept form.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!