1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
10

%20x%20%2B%203%20y%20%3D%2047%20%7D%20%5Cend%7Bcases%7D%20%5Cright." id="TexFormula1" title="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." alt="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." align="absmiddle" class="latex-formula">
Solve for x & y using MATRICES!! Help...​
Mathematics
2 answers:
Brut [27]3 years ago
3 0

\huge \boxed{\mathfrak{Question} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

First, write both the equations in its standard form.

8x+2y=46\\ 7x+3y=47

Now, write the equations in form of matrix.

\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)

Then, multiply the equation towards the left by using the inverse of matrix \left(\begin{matrix}8&2\\7&3\end{matrix}\right)

\sf \: inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

The product of the matrix & its inverse will be the identity matrix.

\sf\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

Now, multiply the matrices that lie on the left-hand side of the equal sign.

\sf\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

For the 2 × 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is ⇨ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right).

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Do the calculations.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Multiply the matrices.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)

Do the arithmetics again.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}  \\\frac{27}{5}\end{matrix}\right)

Finally, extract the matrix elements x & y & write them separately.

\large \boxed{ \boxed{ \bf \: x=\frac{22}{5},y=\frac{27}{5} }}

nata0808 [166]3 years ago
3 0

Hey!

\left \{ {8x~+~2y ~=~ 46} \atop {7x~+~3y~=~46}}\huge

<h2></h2><h2>Solve for x, and y using Matrices.</h2><h2 /><h2>\underline{EXPLANATION :\;}</h2><h2 />

Put the equations in standard form and then use matrices to solve the system of equations.

8x~+~2y=46, ~7x~+~3y=47

Write the equations in matrix form.

\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Left multiply the equation by the inverse matrix of : \left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right).

= \left(\begin{array}{ccc}46\\\\47\end{array}\right)\left(\begin{array}{ccc}x\\\\y\endarray\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right))\left(\begin{array}{ccc}46\\\\47\end{array}\right)

The product of a matrix and its inverse is the identity matrix.

\left(\begin{array}{ccc}1&&0\\\\0&&1\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Multiply the matrices on the left hand side of the equal sign.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

For the 2~x~2 matrix \left(\begin{array}{ccc}a&&b\\\\c&&d\end{array}\right)the inverse matrix is \left(\begin{array}{ccc}\frac{d}{ad-bc}&&\frac{-b}{ad-bc} \\\\\f\frac{-c}{ad-bc} &&\frac{a}{ad-bc} \end{array}\right) so the matrix equation can be rewritten as a matrix multiplication problem.

<h2>\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10} &&-\frac{1}{5} \\-\frac{7}{10} &&\frac{4}{5} \\\end{array}\right) \left(\begin{array}{ccc}46\\\\47\end{array}\right)</h2>

Multiply the matrices.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10}~x~46~-~\frac{1}{5}~~x~47\\\\-\frac{7}{10}~x~46~+~\frac{4}{5}~x~47 \end{array}\right)

Do the arithmetic.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{22}{5}~\\\frac{27}{5} \\\end{array}\right)

Extract the matrix elements x and y.

x = \frac{22}{5}, y = \frac{27}{5}

Hope It Helps...

Sorry, that I answer this question so late...

#LearnWithBrainly

\mathfrak{Jace}

<h2></h2><h2></h2><h2></h2><h2></h2>
You might be interested in
Write the decimal for the expanded form given below.<br><br> 60+7 + 0.3 + 0.05+0.003
svet-max [94.6K]

Answer: 67.353

Step-by-step explanation:

 60.000

+07.000

+00.300           Writing the numbers like this helps me keep track of them!

+00.050        It lets me see what place each number is in relative to the others

+00.003

67.353

5 0
2 years ago
Write an equation that shows the relationship between x and y.
svp [43]
Write an equation to describe the relationship between the corresponding values of x and y shown in the table.
8 0
3 years ago
Help fast!! (no links please.)
amid [387]

Answer:

C) 3

Step-by-step explanation:

Plug in the values on c and d and solve

((3)^2 + (2)^2) - 2((3)^2 - (2)^2)

Solve inside the parenthesis first

(9+4) - 2(9-4) = (13) - 2(5)

Distribute the 2 and solve

13 - 10 = 3

4 0
2 years ago
The points L(10,9)L(10,9), M(10,-5)M(10,-5), N(-1,-5)N(-1,-5), and O(-1,9)O(-1,9) form rectangle LMNOLMNO. Which point is halfwa
Inessa [10]
You are trying to find the halfway point between OO and NN.
OO: (-1,9)    NN: (-1,5)
The x-coordinate does not change, because in both instances it is -1. The y-coordinate is (9-5)/2 AWAY from each point. AKA the number that is equidistant from 5 and 9 (7).

4 0
3 years ago
If you have a plant and it grows 21.3 centimeters in 1 day what would be the x and y
DochEvi [55]

Answer:

Step-by-step explanation:

Here we want to present growth as a function of time; the growth depends upon the number of days that go by.  So, growth(y) is the dependent variable and time (in days, x) is the independent variable.

7 0
3 years ago
Other questions:
  • Find the volume of the cone, read the directions carefully!!​
    14·1 answer
  • Simplify.
    10·1 answer
  • Eq-41 if pyrotechnic visual distress signals are required, how many must be onboard?
    15·1 answer
  • A card is drawn from a standard deck of cards. Find the probability, given that the card is a non-face card.
    12·1 answer
  • I really need help with this. English isn't my first language, and I've asked 3 different people and no one is able to explain t
    12·1 answer
  • Events m and n are independent events. In this scenario if p(m)=.46 and p(m and n)=.138 then p(n)=
    14·1 answer
  • Help with this one too!!!<br><br><br> Show steps please :)
    15·1 answer
  • Please help down below.
    15·1 answer
  • 10. The Johnson family purchased a new television that had a 62 inch diagonal. The height of the television was 30 inches. Appro
    6·1 answer
  • In 2003 a town’s population was 1431. By 2007 the population had grown to 2134. Assume the population is changing linearly.How m
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!