1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
10

%20x%20%2B%203%20y%20%3D%2047%20%7D%20%5Cend%7Bcases%7D%20%5Cright." id="TexFormula1" title="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." alt="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." align="absmiddle" class="latex-formula">
Solve for x & y using MATRICES!! Help...​
Mathematics
2 answers:
Brut [27]3 years ago
3 0

\huge \boxed{\mathfrak{Question} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

First, write both the equations in its standard form.

8x+2y=46\\ 7x+3y=47

Now, write the equations in form of matrix.

\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)

Then, multiply the equation towards the left by using the inverse of matrix \left(\begin{matrix}8&2\\7&3\end{matrix}\right)

\sf \: inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

The product of the matrix & its inverse will be the identity matrix.

\sf\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

Now, multiply the matrices that lie on the left-hand side of the equal sign.

\sf\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

For the 2 × 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is ⇨ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right).

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Do the calculations.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Multiply the matrices.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)

Do the arithmetics again.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}  \\\frac{27}{5}\end{matrix}\right)

Finally, extract the matrix elements x & y & write them separately.

\large \boxed{ \boxed{ \bf \: x=\frac{22}{5},y=\frac{27}{5} }}

nata0808 [166]3 years ago
3 0

Hey!

\left \{ {8x~+~2y ~=~ 46} \atop {7x~+~3y~=~46}}\huge

<h2></h2><h2>Solve for x, and y using Matrices.</h2><h2 /><h2>\underline{EXPLANATION :\;}</h2><h2 />

Put the equations in standard form and then use matrices to solve the system of equations.

8x~+~2y=46, ~7x~+~3y=47

Write the equations in matrix form.

\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Left multiply the equation by the inverse matrix of : \left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right).

= \left(\begin{array}{ccc}46\\\\47\end{array}\right)\left(\begin{array}{ccc}x\\\\y\endarray\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right))\left(\begin{array}{ccc}46\\\\47\end{array}\right)

The product of a matrix and its inverse is the identity matrix.

\left(\begin{array}{ccc}1&&0\\\\0&&1\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Multiply the matrices on the left hand side of the equal sign.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

For the 2~x~2 matrix \left(\begin{array}{ccc}a&&b\\\\c&&d\end{array}\right)the inverse matrix is \left(\begin{array}{ccc}\frac{d}{ad-bc}&&\frac{-b}{ad-bc} \\\\\f\frac{-c}{ad-bc} &&\frac{a}{ad-bc} \end{array}\right) so the matrix equation can be rewritten as a matrix multiplication problem.

<h2>\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10} &&-\frac{1}{5} \\-\frac{7}{10} &&\frac{4}{5} \\\end{array}\right) \left(\begin{array}{ccc}46\\\\47\end{array}\right)</h2>

Multiply the matrices.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10}~x~46~-~\frac{1}{5}~~x~47\\\\-\frac{7}{10}~x~46~+~\frac{4}{5}~x~47 \end{array}\right)

Do the arithmetic.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{22}{5}~\\\frac{27}{5} \\\end{array}\right)

Extract the matrix elements x and y.

x = \frac{22}{5}, y = \frac{27}{5}

Hope It Helps...

Sorry, that I answer this question so late...

#LearnWithBrainly

\mathfrak{Jace}

<h2></h2><h2></h2><h2></h2><h2></h2>
You might be interested in
Please answer both questions
mrs_skeptik [129]

Answer:

which question......

3 0
3 years ago
Read 2 more answers
What rational number represents a drop of 4 1/4 in?<br><br><br>Enter your answer in the box.<br>​
aalyn [17]

Answer:

The fraction 1/4 is a rational number.

It stands for the ratio between the integers 1 and 4.

6 0
3 years ago
Read 2 more answers
A Walmart truck driver estimates that it will take him 12 hours to drive 1152 km. After 5 hours, he has driven 520 km.
san4es73 [151]

(a) He would drive 96 km in an hour because 1152 divided by 12 is 96

(b) He is technically on schedule because he is driving 104 km per hour, instead of 96, so if he keeps driving at the same rate, he should get there in under 12 hours

6 0
3 years ago
!!20 points and Brainliest please help!!!
vitfil [10]

D) ac + ad + bc + bd

Hope it helps :)

7 0
2 years ago
Read 2 more answers
The price of milk increased from $2 to $2.50. What is the percent of change for the price of milk?
Alina [70]

25.00%

Or

25c

Have a Merry Christmas!

5 0
3 years ago
Other questions:
  • This is a net diagram of a room showing the floor and 4 walls (ceiling not included).What is the measurement at x?    m
    9·2 answers
  • Two angles in a triangle have measures of 62 degrees and 15 degrees. What is the measure of the third angle.
    15·2 answers
  • Simplest form please
    5·1 answer
  • Simplify the expression 8(2x+y+z) 10 POINS PLEASE HELP
    5·1 answer
  • 13.55080383<br>16.36940144<br>+ 9.4567438​
    12·1 answer
  • Manny is practicing for the swimming competition. the table shows the distance in meters, y, he swims in x number of laps. If Ma
    15·1 answer
  • Help plzzz I need this done soon
    12·1 answer
  • Find the measurement of angle JGH. *
    12·2 answers
  • Someone help please and make sure the answer is right :)
    10·2 answers
  • Calculate the mean for 31 29 33 37 43 38 33 40
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!