1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
10

%20x%20%2B%203%20y%20%3D%2047%20%7D%20%5Cend%7Bcases%7D%20%5Cright." id="TexFormula1" title="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." alt="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." align="absmiddle" class="latex-formula">
Solve for x & y using MATRICES!! Help...​
Mathematics
2 answers:
Brut [27]3 years ago
3 0

\huge \boxed{\mathfrak{Question} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

First, write both the equations in its standard form.

8x+2y=46\\ 7x+3y=47

Now, write the equations in form of matrix.

\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)

Then, multiply the equation towards the left by using the inverse of matrix \left(\begin{matrix}8&2\\7&3\end{matrix}\right)

\sf \: inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

The product of the matrix & its inverse will be the identity matrix.

\sf\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

Now, multiply the matrices that lie on the left-hand side of the equal sign.

\sf\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

For the 2 × 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is ⇨ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right).

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Do the calculations.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Multiply the matrices.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)

Do the arithmetics again.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}  \\\frac{27}{5}\end{matrix}\right)

Finally, extract the matrix elements x & y & write them separately.

\large \boxed{ \boxed{ \bf \: x=\frac{22}{5},y=\frac{27}{5} }}

nata0808 [166]3 years ago
3 0

Hey!

\left \{ {8x~+~2y ~=~ 46} \atop {7x~+~3y~=~46}}\huge

<h2></h2><h2>Solve for x, and y using Matrices.</h2><h2 /><h2>\underline{EXPLANATION :\;}</h2><h2 />

Put the equations in standard form and then use matrices to solve the system of equations.

8x~+~2y=46, ~7x~+~3y=47

Write the equations in matrix form.

\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Left multiply the equation by the inverse matrix of : \left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right).

= \left(\begin{array}{ccc}46\\\\47\end{array}\right)\left(\begin{array}{ccc}x\\\\y\endarray\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right))\left(\begin{array}{ccc}46\\\\47\end{array}\right)

The product of a matrix and its inverse is the identity matrix.

\left(\begin{array}{ccc}1&&0\\\\0&&1\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Multiply the matrices on the left hand side of the equal sign.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

For the 2~x~2 matrix \left(\begin{array}{ccc}a&&b\\\\c&&d\end{array}\right)the inverse matrix is \left(\begin{array}{ccc}\frac{d}{ad-bc}&&\frac{-b}{ad-bc} \\\\\f\frac{-c}{ad-bc} &&\frac{a}{ad-bc} \end{array}\right) so the matrix equation can be rewritten as a matrix multiplication problem.

<h2>\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10} &&-\frac{1}{5} \\-\frac{7}{10} &&\frac{4}{5} \\\end{array}\right) \left(\begin{array}{ccc}46\\\\47\end{array}\right)</h2>

Multiply the matrices.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10}~x~46~-~\frac{1}{5}~~x~47\\\\-\frac{7}{10}~x~46~+~\frac{4}{5}~x~47 \end{array}\right)

Do the arithmetic.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{22}{5}~\\\frac{27}{5} \\\end{array}\right)

Extract the matrix elements x and y.

x = \frac{22}{5}, y = \frac{27}{5}

Hope It Helps...

Sorry, that I answer this question so late...

#LearnWithBrainly

\mathfrak{Jace}

<h2></h2><h2></h2><h2></h2><h2></h2>
You might be interested in
How many significant digits are in this number 85 000?
Tpy6a [65]
There are 2 significant figures in 85 000
5 0
3 years ago
Read 2 more answers
The number is 9,18,27,36,45 what is the question?
astraxan [27]
The question is to find to rule
9 +9 =18
18+9=27
27+9=36
36+9=45
3 0
3 years ago
Figure 1 and figure 2 are two congruent parallelograms drawn on a coordinate grid as shown below:
LenKa [72]

Answer:

  (a)  Reflection across the y-axis, followed by translation 10 units down

Step-by-step explanation:

Figure 2 is not a reflection across the origin of Figure 1, so neither of the double reflections will map one to the other.

Reflection across the y-axis will put the bottom point at (5, 3). The bottom point on Figure 2 is at (5, -7), so has been translated down by 3-(-7) = 10 units.

Figure 1 is mapped to Figure 2 by reflection over the y-axis and translation down 10 units.

7 0
3 years ago
8) 8 b + 4 a b - 16 b​
Neporo4naja [7]

Answer:

If you meant to simplify the expression,

-8b+4ab

if factor: 4b(a-2)

Step-by-step explanation:

To simplify an expression, combine the like terms.

8b+4ab-16b, 8b and -16b are like terms.

-8b+4ab, notice 4ab has an extra a before the b, so it is not a like term of -8b

To factor it out:

The expression -8b+4ab both includes b in it.

Thus,

b(-8+4a) -8 and 4 can be has GCF of 4

=4b(a-2).

3 0
3 years ago
PPPPPPLLLLLLEEAAASSEE HELLLPPP WIL MARK BRAINLIEST the brackets for a shelf are in the shape of a triangle. Find the angles of t
ahrayia [7]

Answer:

Step-by-step explanation:

Sum of the angles of a triangle is ALWAYS 180°.

2x+3x+5x = 180°

10x = 180°

x = 18°

2x = 36°

3x = 54°

5x = 90°

The angles are 36°, 54°, and 90°

6 0
3 years ago
Other questions:
  • Help explain what to do
    5·2 answers
  • Please help me with this question and include the explanation and working so i can understand :)
    10·1 answer
  • If five notebooks cost $5.25 how much would 3 note books cost
    5·2 answers
  • It takes the Earth 24 hours to complete a full rotation. It take Saturn approximately 10 hours, 39 mintues, and 24 seconds to co
    14·1 answer
  • 15 is closest to what real number?
    9·2 answers
  • I thought it was 12.56 but it’s wrong
    5·1 answer
  • Solve this problem 1\3+ 3 1\3 =
    13·2 answers
  • Help i hate maths its just HARD FOR MEEE​
    5·1 answer
  • Plane traveled 1120 miles each way to Munich and back. The trip there was with the wind. It took 10 hours. The trip back was int
    8·1 answer
  • What is the solution to the system of equations?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!