1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
10

%20x%20%2B%203%20y%20%3D%2047%20%7D%20%5Cend%7Bcases%7D%20%5Cright." id="TexFormula1" title="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." alt="\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right." align="absmiddle" class="latex-formula">
Solve for x & y using MATRICES!! Help...​
Mathematics
2 answers:
Brut [27]3 years ago
3 0

\huge \boxed{\mathfrak{Question} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}

\left. \begin{cases} { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{cases} \right.

First, write both the equations in its standard form.

8x+2y=46\\ 7x+3y=47

Now, write the equations in form of matrix.

\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)

Then, multiply the equation towards the left by using the inverse of matrix \left(\begin{matrix}8&2\\7&3\end{matrix}\right)

\sf \: inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

The product of the matrix & its inverse will be the identity matrix.

\sf\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

Now, multiply the matrices that lie on the left-hand side of the equal sign.

\sf\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)

For the 2 × 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is ⇨ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right).

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Do the calculations.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)

Multiply the matrices.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)

Do the arithmetics again.

\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}  \\\frac{27}{5}\end{matrix}\right)

Finally, extract the matrix elements x & y & write them separately.

\large \boxed{ \boxed{ \bf \: x=\frac{22}{5},y=\frac{27}{5} }}

nata0808 [166]3 years ago
3 0

Hey!

\left \{ {8x~+~2y ~=~ 46} \atop {7x~+~3y~=~46}}\huge

<h2></h2><h2>Solve for x, and y using Matrices.</h2><h2 /><h2>\underline{EXPLANATION :\;}</h2><h2 />

Put the equations in standard form and then use matrices to solve the system of equations.

8x~+~2y=46, ~7x~+~3y=47

Write the equations in matrix form.

\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Left multiply the equation by the inverse matrix of : \left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right).

= \left(\begin{array}{ccc}46\\\\47\end{array}\right)\left(\begin{array}{ccc}x\\\\y\endarray\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right))\left(\begin{array}{ccc}46\\\\47\end{array}\right)

The product of a matrix and its inverse is the identity matrix.

\left(\begin{array}{ccc}1&&0\\\\0&&1\end{array}\right) \left(\begin{array}{ccc}x\\\\y\end{array}\right) inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

Multiply the matrices on the left hand side of the equal sign.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = inverse(\left(\begin{array}{ccc}8&2\\\\7&3\end{array}\right)) \left(\begin{array}{ccc}46\\\\47\end{array}\right)

For the 2~x~2 matrix \left(\begin{array}{ccc}a&&b\\\\c&&d\end{array}\right)the inverse matrix is \left(\begin{array}{ccc}\frac{d}{ad-bc}&&\frac{-b}{ad-bc} \\\\\f\frac{-c}{ad-bc} &&\frac{a}{ad-bc} \end{array}\right) so the matrix equation can be rewritten as a matrix multiplication problem.

<h2>\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10} &&-\frac{1}{5} \\-\frac{7}{10} &&\frac{4}{5} \\\end{array}\right) \left(\begin{array}{ccc}46\\\\47\end{array}\right)</h2>

Multiply the matrices.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{3}{10}~x~46~-~\frac{1}{5}~~x~47\\\\-\frac{7}{10}~x~46~+~\frac{4}{5}~x~47 \end{array}\right)

Do the arithmetic.

\left(\begin{array}{ccc}x\\\\y\end{array}\right) = \left(\begin{array}{ccc}\frac{22}{5}~\\\frac{27}{5} \\\end{array}\right)

Extract the matrix elements x and y.

x = \frac{22}{5}, y = \frac{27}{5}

Hope It Helps...

Sorry, that I answer this question so late...

#LearnWithBrainly

\mathfrak{Jace}

<h2></h2><h2></h2><h2></h2><h2></h2>
You might be interested in
27. The average hourly wage of workers at a fast food restaurant is $7.25/hr
morpeh [17]

Answer:

0.0668 = 6.68% probability that the worker earns more than $8.00

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

The average hourly wage of workers at a fast food restaurant is $7.25/hr with a standard deviation of $0.50.

This means that \mu = 7.25, \sigma = 0.5

If a worker at this fast food restaurant is selected at random, what is the probability that the worker earns more than $8.00?

This is 1 subtracted by the pvalue of Z when X = 8. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{8 - 7.25}{0.5}

Z = 1.5

Z = 1.5 has a pvalue of 0.9332

1 - 0.9332 = 0.0668

0.0668 = 6.68% probability that the worker earns more than $8.00

8 0
3 years ago
Line RS bisects PQ at point R, Find RQ if PQ = 14 cm
Dovator [93]
If PQ is 14, each segment, PR and RQ will be 7.
14 = PR + 7.
6 0
3 years ago
Determine the percentage increase from 10 yards to 13 yards
julia-pushkina [17]

Answer:

30%

Step-by-step explanation:

In this case, we have a positive change (increase) of 30% because the new value is greater than the old value. Using this tool you can find the percent increase for any value.

Hope this helps!

Brain-list?

3 0
3 years ago
Need help with this question please help
Bess [88]
If you look closely the area where 3x is congruent to the other side of the 90 degree angle with one part as 0.5x + 34

So
3x + 0.5x + 34= 90

x will be 16

So plug it in

0.5(16) + 34= 42 degrees


And


3(16)= 48 degrees

That left half of the circle is 180 degrees and since we know the angle 3x is 48 degrees we subtract it from 180 to get angle AE


180-48

132 degrees is your answer

7 0
4 years ago
Write the standard equation for the circle center (-6, 7), r= 9.
Oduvanchick [21]

Answer:

(×+6)^2 + (y -7 ) ^2=81

Step-by-step explanation:

hope this helps

3 0
3 years ago
Other questions:
  • Which is a factor of 21 <br> a6 <br> b5 <br> c4 <br> d3
    10·2 answers
  • Parallelogram FGHJ was dilated and translated to form
    11·2 answers
  • I need help dividing a binomial
    6·2 answers
  • How do I solve x/2 plus x/5 equals 1
    9·2 answers
  • Which number is not rounded correctly? A. 1.254 rounded to 1.25 B. 20.7 rounded to 21 C. 0.632 rounded to 0.63 D. 13.76 rounded
    11·2 answers
  • Two cars start moving from the same point. One travels south at 16 mi/h and the other travels west at 12 mi/h. At what rate is t
    10·1 answer
  • 5. If three times a number is increased by 4, the result is -8.
    12·2 answers
  • Explain how this diagram can represent 3 - 7 = n​
    9·2 answers
  • Solve the following equation: <br>8(x - 4) = 4(x - 7) ​
    6·2 answers
  • I need to know if my answer is correct it is the circled one I used systems of equations to solve this one
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!