1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aneli [31]
3 years ago
7

Solve this 18 ≤ −6x − 30

Mathematics
2 answers:
ElenaW [278]3 years ago
5 0
Answer: x≤ -8

. . . . .
lawyer [7]3 years ago
5 0

Answer:

x \geq -8

Step-by-step explanation:

First I'm going to add 30 to both sides because I hate dealing with negative numbers, ESPECIALLY when it's on the side with x.

48 \leq -6x

Great luck! 48 is a multiple of both 6 and -6 so we will simply divide both sides by positive 6

8 \leq -x

We can NEVER keep x negative in these kinds of problems. GET OUTA HERE.  Let's divide both sides by -1.

-8 \leq x

Your teacher might want you to put the x on the left side. It's very common and important to do so:

x \geq -8

Hope you have a good day and luck in finding good memes!

You might be interested in
Please solve the worksheet. (factoring trinomials)
Vesnalui [34]

Answer:

1. (x+3)(x+1)

2. (m+4)(m+8)

3. (r-2)(r-1)

4. (x-5)(x-1)

5. (x-7)(x-3)

6. (x-11)(x-11)

7. (t-6)(t+2)

8. (p-8)(p-8)

9. (x-1)(x-9)

10. (x+5)(x+1)

11. (a+9)(a-1)

12. (y-8)(y+1)

13. (x-3)(x+1)

14. (y+13)(y+1)

15. (m+5)(m+4)

16. (x+10)(x+2)

17. (a-12)(a-2)

18. (y+9)(y+2)

19. xy(x+2+y) i think

20. ab(a-4+4b)

21. xy(x+6-7y)

5 0
3 years ago
The product of two rational numbers is 34.77. If one of the numbers is 6.1, what is the other number?
erik [133]

Answer:

5.7

Step-by-step explanation:

6 0
3 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Given f(x) = (lnx)^3 find the line tangent to f at x = 3
kirill [66]
Explanation

We must the tangent line at x = 3 of the function:

f(x)=(\ln x)^3.

The tangent line is given by:

y=m*(x-h)+k.

Where:

• m is the slope of the tangent line of f(x) at x = h,

,

• k = f(h) is the value of the function at x = h.

In this case, we have h = 3.

1) First, we compute the derivative of f(x):

f^{\prime}(x)=\frac{d}{dx}((\ln x)^3)=3*(\ln x)^2*\frac{d}{dx}(\ln x)=3*(\ln x)^2*\frac{1}{x}=\frac{3(\ln x)^2}{x}.

2) By evaluating the result of f'(x) at x = h = 3, we get:

m=f^{\prime}(3)=\frac{3}{3}*(\ln3)^2=(\ln3)^2.

3) The value of k is:

k=f(3)=(\ln3)^3

4) Replacing the values of m, h and k in the general equation of the tangent line, we get:

y=(\ln3)^2*(x-3)+(\ln3)^3.

Plotting the function f(x) and the tangent line we verify that our result is correct:

Answer

The equation of the tangent line to f(x) and x = 3 is:

y=(\ln3)^2*(x-3)+(\ln3)^3

6 0
1 year ago
1. Find the vertex, focus, directrix, and focal width of the parabola x^2 = 12y (1 point)
Finger [1]

Answer:

I think its B!

Step-by-step explanation:

What grade r u in??

3 0
2 years ago
Read 2 more answers
Other questions:
  • If the life in years of a television set is normally distributed with a mean of 36 years and a standard deviation of 8 years wha
    9·1 answer
  • EASY 50 POINTS. PLEASE HELP!!!
    12·1 answer
  • What does h(40) = 1700 mean in terms of the problem?
    9·2 answers
  • Someone help this math doesn't make sense
    6·2 answers
  • HEEEEEEEEEEEEEEEEEEELP
    6·2 answers
  • Not every straight line will pass the vertical line test. What is the only type
    14·1 answer
  • I will give brainlest
    15·2 answers
  • ANSWER CORRECTLY FOR BRAINLIEST ASAP TY PLS ! :)
    14·1 answer
  • A total of 655 persons have multiple job in a city. Of them, 381 are male, 299 are married and 168 are make and married. Find th
    12·1 answer
  • 10. Select all true statements.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!