Answer:
=6.5%
Explanation:
Mass of the ball: ]
Initial velocity of the ball:
final velocity of the ball: which is -30/100 of =
Mass of the bottle:
Initial velocity of the bottle:
final velocity of the bottle: is unknown (to find)
<em>by using conservation momentum, which stated that the initial momentum is equal to the final momentum.</em>
<em /><em />
<em>so since the bottle is at rest firstly, therefore </em><em />
<em /><em />
<em /><em> </em><em>equation 1</em>
so now substitute into equation 1
<em /><em />
<em>collect the like terms</em>
divide both side by
Now substitute
6.5%
<em />
Just find the density of every metal and select the one with a density of 2.71 g/cm³ . This is:
Metal 1
ρ = m/V
ρ = 22.1 g / 3 cm³
ρ = 7.367 g / cm³
Metal 2
ρ = m/V
ρ = 42 g / 4 cm³
ρ = 10.5 g / cm³
Metal 3
ρ = m/V
ρ = 9.32 g / 5 cm³
ρ = 1.864 g / cm³
Metal 4
ρ = m/V
ρ = 8.13 g / 3 cm³
ρ = 2.71 g / cm³
<h2>R / Metal 4 was selected.</h2>
Answer:
Sewage dumps pollute our waterways causing death of marine life, water pollution, and disease.
Explanation:
Sewage dumps. bring disease or death to our ecosystems
The unmagnetized pieces of iron would be randomly pointing to directions, this is true because although influenced with the magnetic domain, the direction of the unmagnetized iron field of attraction is not uniform or does not have preferred direction.
Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m