Complete question:
A 200 g load attached to a horizontal spring moves in simple harmonic motion with a period of 0.410 s. The total mechanical energy of the spring–load system is 2.00 J. Find
(a) the force constant of the spring and (b) the amplitude of the motion.
Answer:
(a) the force constant of the spring = 47 N/m
(b) the amplitude of the motion = 0.292 m
Explanation:
Given;
mass of the spring, m = 200g = 0.2 kg
period of oscillation, T = 0.410 s
total mechanical energy of the spring, E = 2 J
The angular speed is calculated as follows;

(a) the force constant of the spring

(b) the amplitude of the motion
E = ¹/₂kA²
2E = kA²
A² = 2E/k

The specific heat of the metal, assuming no heat is exchanged with the surroundings is 2140 J/(kg•K).
<h3>
Specific heat capacity of the metal</h3>
The specific heat capacity of the metal is determined from the principle of conservation of energy.
energy lost by the metal = energy gained by aluminum + energy gained by water
Q = mcΔθ
where;
- m is mass (kg)
- c is specific heat capacity
- Δθ is change in temperature
0.425c(100 - 40) = 0.1(900)(40 - 15) + 0.5(4186)(40 - 15)
25.5c = 2250 + 52,325
c = 54,575/25.5
c = 2140 J/(kg•K)
Learn more about specific heat capacity here: brainly.com/question/21406849
#SPJ1
Answer: The multiplication factor is 72.136 cm. This will give you the unit conversion when multiplied with 28.4 inch
Explanation:
1 inch = 2.54 cm
28.4 inches = x cm
Xcm= (28.4 inches × 2.54cm)/1 inch
X= 72.136
..............................................A
The factors that can cause an induced current in a wire loop are number of turns of the wire, area of the wire and magnetic field strength.
<h3>
Induced emf</h3>
According to Faraday's law of electromagnetic induction, the rate of change of flux in a magnetic field is proportional to the flux through the magnetic field.
emf = dФ/dt
where;
- Ф is magnetic flux = BA (magnetic field and area of the coil)
emf = N(BA)/dt
where;
Thus, the factors that can cause an induced current in a wire loop are number of turns of the wire, area of the wire and magnetic field strength.
Learn more about electromagnetic induction here: brainly.com/question/26334813