Explanation:
<em>a)Which of the two has uniform acceleration?</em>
Acceleration is the second derivative of position. The acceleration of the first particle is:
x = 4t² − 2t
v = 8t − 2
a = 8
The acceleration of the second particle is:
x = 6t³ + 8t
v = 18t² + 8
a = 36t
The first particle has uniform acceleration.
<em>b)Which one is likely to come to rest at some time during its motion?</em>
The particles come to rest when v = 0. The first particle's velocity has a real zero at t = 4. The second particle's velocity has only imaginary zeros, meaning v is never 0.
Answer:
no
Explanation:
the inertia of an object does not make it to come to rest, this is normally caused by friction
Answer:
v = 620.17 m/s
Explanation:
There are different formulas for calculating the speed of a wave. Based on the given parameters, the speed of the wave can be estimated as:
v = sqrt(breaking tensile strength/density)
Where:
The breaking tensile strength = 3*10^9 N/m^2
Density = 7800 kg/m^3
Therefore, we can estimate the speed of the wave as shown below:
v = sqrt(3*10^9/7800) = sqrt(384615.3846) = 620.17 m/s
Answer:
A. demand increases and supply decreases
Explanation:
The correct answer is: The equilibrium price will rise, but equilibrium quantity may increase, decrease, or stay the same if demand increases and supply decreases