The relationship between force and extension is a linear one, which means that if you plot a force vs. extension graph, you'll get a straight line. It will pass through the origin (x = 0; F = 0), and its slope will be equal to the spring constant, k.
Measure the Slope of the Force Extension Graph
In general, you can find the slope of a line by choosing two points and forming a ratio of the rise and the run between these two points. If the first point you choose is (x1, F1), and the second point is (x2, F2), the slope of the line is:
slope= f(2)- f(1)
---------
x(2)-x(1)
Assuming F2 is larger than F1.
This is the value of the spring constant, k. Despite the minus sign in the Hooke's law equation, k is a positive number, because the slope in the Hooke's law graph is positive.
Note that the spring constant has units of force/distance. In the MKS system, the spring constant units are newtons/meter. In the CGS system, they are dynes/centimeter. In the imperial system, they are pounds of force (lbf) /foot.
Now that you have the spring constant, you can predict exactly how much the spring will distend or compress when you subject it to any force.
Answer: d= 0.57* l
Explanation:
We need to check that before ladder slips the length of ladder the painter can climb.
So we need to satisfy the equilibrium conditions.
So for ∑Fx=0, ∑Fy=0 and ∑M=0
We have,
At the base of ladder, two components N₁ acting vertical and f₁ acting horizontal
At the top of ladder, N₂ acting horizontal
And Between somewhere we have the weight of painter acting downward equal to= mg
So, we have N₁=mg
and also mg*d*cosФ= N₂*l*sin∅
So,
d=
* tan∅
Also, we have f₁=N₂
As f₁= чN₁
So f₁= 0.357 * 69.1 * 9.8
f₁= 241.75
Putting in d equation, we have
d=
* tan 58
d= 0.57* l
So painter can be along the 57% of length before the ladder begins to slip
Using the graph, which describes how Henry ran the 100m race;
a) It takes Henry 20seconds to run 100m
b) Henry's average speed over the race is; 5m/s.
According to the linear graph which describes the distance ran by Henry during the 100m race as a function of time.
a) Since the distance from start ran by Henry is plotted on the vertical axis, and the time is plotted on the horizontal axis;
To determine how long it took Henry to run 100m; The point corresponding to 100m is traced downward from the line of the graph and we find out that;
It takes Henry 20seconds to run 100m
b) Henry's average speed over the race is simply;
The slope of the distance-time graph.
Therefore,
- Average speed = (100-0)/(20-0)
Therefore, Henry's average speed over the race is; 5m/s.
Read more:
brainly.com/question/22125199
Answer:
by using a magnetic field
Answer:
Explanation:
Newtons third law says an applied force will produce an equal but opposite force.
