Answer:
did you figure out the answer
Explanation:
??
Answer:
f = 276.6 Hz
Explanation:
This musical instrument can be approximated to a tube system where each tube has one end open and the other closed.
In the closed part there is a node and in the open part a belly or antinode. Therefore the wavelength is
L = λ/ 4
speed is related to wavelength and frequency
v = λ f
λ = v / f
we substitute
L = v / 4f
f = v / 4L
the speed of sound at 20ºC is
v = 343 m / s
let's calculate
f =
f = 276.6 Hz
Answer: if the mass is doubled, the force of gravity is doubled, meaning it decreases. If the distance is doubled, the force of gravity is 1/4 as strong as before
Explanation:
The answer is <span>A.)the greenhouse effect
</span>
Answer:
a. 32.67 rad/s² b. 29.4 m/s²
Explanation:
a. The initial angular acceleration of the rod
Since torque τ = Iα = WL (since the weight of the rod W is the only force acting on the rod , so it gives it a torque, τ at distance L from the pivot )where I = rotational inertia of uniform rod about pivot = mL²/3 (moment of inertia about an axis through one end of the rod), α = initial angular acceleration, W = weight of rod = mg where m = mass of rod = 1.8 kg and g = acceleration due to gravity = 9.8 m/s² and L = length of rod = 90 cm = 0.9 m.
So, Iα = WL
mL²α/3 = mgL
dividing through by mL, we have
Lα/3 = g
multiplying both sides by 3, we have
Lα = 3g
dividing both sides by L, we have
α = 3g/L
Substituting the values of the variables, we have
α = 3g/L
= 3 × 9.8 m/s²/0.9 m
= 29.4/0.9 rad/s²
= 32.67 rad/s²
b. The initial linear acceleration of the right end of the rod?
The linear acceleration at the initial point is tangential, so a = Lα = 0.9 m × 32.67 rad/s² = 29.4 m/s²