If the liquid is at or above its flash point, the flame spread rate is fast, and the entire pool is engulfed within seconds. ... As the liquid temperature decreases, flame radiation must both heat the liquid to the flash point temperature and supply the heat of vaporization.
The vapor pressure of water at 50ºC will be greater than that at 10ºC because of the added energy and thus greater movement of the water molecules. If one knows the ∆Hvap at a given temperature, one can calculate the vapor pressure at another temperature. This uses the Clausius-Clapeyron (sp?) equation. It turns out the vapor pressure of water at 10º is 9.2 mm Hg, and that at 50º is 92.5 mm Hg.
Question 4: The first one
Question 5: The fourth one
Question 6: The first one
Question 7: The third one
Explanation:
Let us assume that the given data is as follows.
mass of barium acetate = 2.19 g
volume = 150 ml = 0.150 L (as 1 L = 1000 ml)
concentration of the aqueous solution = 0.10 M
Therefore, the reaction equation will be as follows.

Hence, moles of
=
.......... (1)
As, No. of moles =
Hence, moles of
will be calculated as follows.
No. of moles =
=
(molar mass of
is 255.415 g/mol)
= 
Moles of
= 
= 0.01715 mol
Hence, final molarity will be as follows.
Molarity = 
= 
= 0.114 M
Thus, we can conclude that final molarity of barium cation in the solution is 0.114 M.
Answer: The growth of the plant decides on the presence of plant hormone, auxin which develops in the roots and shoots. Auxins change the rate of elongation in plant cells, controlling how long they become. So, if the tips are removed, there is no auxin made and growth of the plant stops.