Explanation:
Substances generally tends to specialize as either oxidizing or reducing agents.
An oxidizing agent is an electron acceptor which causes a co-reactant to be oxidized in a reaction.
Examples are:
Non-metals especially oxygen and the halogens.
Other examples are H₂SO₄ , HNO₃, KMnO₄, K₂Cr₂O₇
learn more:
Oxidizing and reducing agents brainly.com/question/5558762''
#learnwithBrainly
I think its becuse the shoreline is shalow water that is warmed by the sun? ...... I may be rong
The mass (in grams) of iron, Fe that can be made from 21.5 g of Fe₂O₃ is 15.04 g
We'll begin by writing the balanced equation for the reaction. This is given below:
2Fe₂O₃ -> 4Fe + 3O₂
- Molar mass of Fe₂O₃ = 159.7 g/mol
- Mass of Fe₂O₃ from the balanced equation = 2 × 159.7 = 319.4 g
- Molar mass of Fe = 55.85 g/mol
- Mass of Fe from the balanced equation = 4 × 55.85 = 223.4 g
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
<h3>How to determine the mass of iron, Fe produced</h3>
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
Therefore,
21.5 g of Fe₂O₃ will decompose to produce = (21.5 × 223.4) / 319.4 = 15.04 g of Fe
Thus, 15.04 g of Fe were produced.
Learn more about stoichiometry:
brainly.com/question/9526265
#SPJ1
Answer:
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Explanation:
Let's consider the unbalanced equation that occurs when phosphoric acid reacts with barium hydroxide to form water and barium phosphate. This is a neutralization reaction.
H₃PO₄(aq) + Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
We will balance it using the trial and error method.
First, we will balance Ba atoms by multiplying Ba(OH)₂ by 3 and P atoms by multiplying H₃PO₄ by 2.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
Finally, we will get the balanced equation by multiplying H₂O by 6.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Aqua regia is an oxidative mixture that is highly corrosive and is composed of hydrochloric acid and nitric acid. The Ea (rev) for the reaction is 3 kJ.
<h3>What is activation energy?</h3>
The activation energy is the minimum required energy by the reactant to undergo changes to form the product. The activation energy of the reverse reaction is given by the difference in the production state and transition state.
It is given as,
Ea (rev) = Ea (fwd) − ΔHrxn
Given,
ΔH° = 83KJ
Ea (fwd) = 86 kJ/mol
Substituting the values above as:
Ea (rev) = 86 - 83
= 3 kJ
Therefore, the activation energy of the reverse reaction is 3 kJ.
Learn more about activation energy, here:
brainly.com/question/14287952
#SPJ4