We have to solve this question using the stoichiometry of the reaction:
The equation of the reaction is;

According to the question;
Number of moles of CO2 released = 21.3 g/44 g/mol = 0.48 moles
From the stoichiometry of the reaction:
Since;
24 moles of CO2 released 15,026 KJ
0.48 moles of CO2 will release 0.48 * 15,026/24
= 301 KJ of heat.
brainly.com/question/6901180
When water chemically combines with carbon dioxide, a Carbonic acid is formed.
<u>Explanation</u>:
- Carbon dioxide responds with water in a solution to form a weak acid, carbonic acid. Carbonic acid disassociates into hydrogen particles and bicarbonate particles. The hydrogen particles and water respond with the most basic minerals modifying the minerals.
-
Carbon dioxide and the other atmospheric gases disintegrate in surface waters. Dissolved gases are in equilibrium with the gas in the atmosphere. Carbon dioxide responds with water in a solution to form the weak acid, carbonic acid. Carbonic acid disassociates into hydrogen particles and bicarbonate particles.
-
The hydrogen particles and water respond with the most basic minerals altering the minerals. The results of enduring are prevalently clays and soluble particles, for example, calcium, iron, sodium, and potassium. Bicarbonate particles additionally remain in solution; a remnant of the carbonic acid that was utilized to weather the rocks.
Covalent bonds or interactions are overcome when a nonmetal extended network melts.
Typically, nonmetals form covalent bonds with one another. A polyatomic ion's atoms are joined by a form of link called covalent bonding. A covalent bond requires two electrons, one from each of the two atoms that are connecting.
One technique to depict the formation of covalent connections between atoms is with Lewis dot formations. The number of unpaired electrons and the number of bonds that can be formed by each element are typically identical. Each element needs to share an unpaired electron in order to establish a covalent bond.
Therefore, covalent bonds or interactions are overcome when a nonmetal extended network melts.
Learn more about covalent bonds here;
brainly.com/question/10777799
#SPJ4