The molar mass of the unknown compound is calculated as follows
let the unknown gas be represented by letter Y
Rate of C2F4/ rate of Y = sqrt of molar mass of gas Y/ molar mass of C2F4
= (4.6 x10^-6/ 5.8 x10^-6) = sqrt of Y/ 100
remove the square root sign by squaring in both side
(4.6 x 10^-6 / 5.8 x10^-6)^2 = Y/100
= 0.629 =Y/100
multiply both side by 100
Y= 62.9 is the molar mass of unknown gas
Answer:
They both have the same number of atoms
Explanation:
quizlet
Correct Answer: Option g: <span>adding salt to water lowers its freezing point
Reason:
Freezing point is a colligative property. When a non-volatile solution is present in solution, it's freezing point decreases. This is referred as depression in freezing point (</span>ΔTf<span>). Extent of lowering in freezing point is dependent on number of particles present in system. Mathematically it is expressed as:
</span>ΔTf = Kf X m
<span>
where, m = molality of solution
Kf = cryoscopic constant.
Hence, a</span><span>dding salt to water lowers the freezing point of solution.</span>
It's 2) a positively-charged nucleus is surrounded by mostly empty space (aka Rutherford's Model).
Most of the atom's mass is inside the nucleus (which contains protons [+] and neutrons [0 charge]), while the electrons [-] "float" around the nucleus like clouds. This is why it's said that the atom is 'mostly empty space'.