Answer:
1. 25 moles water.
2. 41.2 grams of sodium hydroxide.
3. 0.25 grams of sugar.
4. 340.6 grams of ammonia.
5. 4.5x10²³ molecules of sulfur dioxide.
Explanation:
Hello!
In this case, since the mole-mass-particles relationships are studied by considering the Avogadro's number for the formula units and the molar mass for the mass of one mole of substance, we proceed as shown below:
1. Here, we use the Avogadro's number to obtain the moles in the given molecules of water:

2. Here, since the molar mass of NaOH is 40.00 g/mol, we obtain:

3. Here, since the molar mass of C6H12O6 is 180.15 g/mol:

4. Here, since the molar mass of ammonia is 17.03 g/mol:

5. Here, since the molar mass of SO2 is 64.06 g/mol:

Best regards!
Answer:
The answer is true.
Explanation:
Hello! Let's solve this!
The answer is true.
When a crust undergoes great tension, a crack opens and the oceanic crust begins to form. As the crack enlarges, the continent is splitting. Thus an oceanic crust forms. So the oceanic crust is younger than the earth's crust.
However, Duncan has prepared ramen noodles so many times he does not need to measure the water carefully. If he happens to heat 0.850 ...
Data:
p (pressure) = 81.8 kPa = 81.8*10³ Pa ≈ 8.07 atm
v (volume) = ? (in L)
n (number of mols) = 0.352 mol
R (Gas constant) = 0.082 (atm*L/mol*K)
T (temperature) = 25ºC converting to Kelvin, we have:
TK = TC + 273 → TK = 25 + 273 → TK = 298
Formula:

Solving:



