Answer:
solution:
dT/dx =T2-T1/L
&
q_x = -k*(dT/dx)
<u>Case (1) </u>
dT/dx= (-20-50)/0.35==> -280 K/m
q_x =-50*(-280)*10^3==>14 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (3)
q_x =-50*(160)*10^3==>-8 kW
T2=T1+dT/dx*L=70+160*0.25==> 110° C
Case (4)
q_x =-50*(-80)*10^3==>4 kW
T1=T2-dT/dx*L=40+80*0.25==> 60° C
Case (5)
q_x =-50*(200)*10^3==>-10 kW
T1=T2-dT/dx*L=30-200*0.25==> -20° C
note:
all graph are attached
The force equation can easily prove this. F=ma. This states that the force on an object is equal to mass times acceleration. If the mass stays the same and the velocity of the cars increases than that means there is a larger force. This is because in both cases the cars are stopping in almost an instant and the times of the crashes are theoretically identical. Acceleration is the change in velocity over time. If the velocity is higher with the same amount of time than that means there is a higher acceleration. If you plug a higher acceleration into the force equation then you wind up with a higher force and in turn a more damaging collision.
<span />
Answer:
18 N
Explanation:
Force can be found using the following formula.
f= m*a
where m is the mass and a is the acceleration.
We know the desk has a mass of 36 kilograms. We also know that its acceleration is 0.5 m/s^2.
m= 36 kg
a= 0.5 m/s^2
Substitute these values into the formula.
f= 36 kg * 0.5 m/s^2
Multiply 36 and 0.5
f=18 kg m/s^2
1 kg m/s^2 is equivalent to 1 Newton, or N.
f= 18 Newtons
The force being applied is 18 kg m/s^2, Newtons, or N
Answer:
A, C
Explanation:
It can be found in objects like a swing. It creates kinetic energy when it is coming back or going away, while moving.