He should push it gently.
This is because the forces of resistance this situation are minimal, so the rock will not slow as it would on Earth. Kicking the rock may result in it travelling too fast and hitting something else, causing damage. Moreover, the rock could start rebounding off of surfaces and create havoc.
Theoretically, the light ray will not change direction. The center of a lens is called the optical center. If the ray of light hits the lens even just a little bit off center, the light ray is refracted. Refraction happens when the incident and exit angles of the ray are different. The optical center is guaranteed to not have any difference in angle, which allows the light ray to pass through directly without changing direction.
Answer:
d = 2021.6 km
Explanation:
We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them
Airplane 1
Height y₁ = 800m
Angle θ = 25°
cos 25 = x / r
sin 25 = z / r
x₁ = r cos 20
z₁ = r sin 25
x₁ = 18 103 cos 25 = 16,314 103 m
= 16314 m
z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m
2 plane
Height y₂ = 1100 m
Angle θ = 20°
x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m
z₂ = 20 103 without 25 = 8.452 103 m = 8452 m
The distance between the planes using the Pythagorean Theorem is
d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2
Let's calculate
d² = (18126-16314)² + (1100-800)² + (8452-7607)²
d² = 3,283 106 +9 104 + 7,140 105
d² = (328.3 + 9 + 71.40) 10⁴
d = √(408.7 10⁴)
d = 20,216 10² m
d = 2021.6 km
Answer:
F₂ = -7.3 N
Explanation:
Given that,
The mass of an object, m₁ = 3.7 kg
First force, F₁ = 11 N
The net acceleration of the object is 1 m/s².
We know that,
F₁+F₂ = ma
11+F₂ = (3.7)(1)
F₂ = 3.7-11
F₂ = -7.3 N
so, the other force is 7.3 N and it is acting in west direction.
Answer:
c. selenium
Explanation:
sulfur and selenium are in the same group