Answer:
a rightangle triangle
Step-by-step explanation:
because 72+18=90 degrees
when a side is 90 degrees in a triangle, it is right-angled.
hope this helps you!!
X^2-5x-14
It is the correct answer I think
<u>Answer-</u>
<em>A. strong negative correlation.</em>
<u>Solution-</u>
<u>Direction of a relationship</u>
- Positive- If one variable increases, the other tends to also increase. If one decreases, the other tends to also. It is represented by positive numbers(i.e 0 to 1).
-
Negative- If one variable increases, the other tends to decrease, and vice-versa. It is represented by negative numbers(i.e 0 to -1)
<u>Strength of a relationship</u>
- Perfect Relationship- When two variables are linearly related, the correlation coefficient is either 1 or -1. They are said to be perfectly linearly related, either positively or negatively.
- No relationship- When two variables have no relationship at all, their correlation is 0.
As in this case, correlation coefficient was found to be -0.91, which is negative and close to -1, so it is a strong negative correlation.
Answer:
Step-by-step explanation:
Researchers measured the data speeds for a particular smartphone carrier at 50 airports.
The highest speed measured was 76.6 Mbps.
n= 50
X[bar]= 17.95
S= 23.39
a. What is the difference between the carrier's highest data speed and the mean of all 50 data speeds?
If the highest speed is 76.6 and the sample mean is 17.95, the difference is 76.6-17.95= 58.65 Mbps
b. How many standard deviations is that [the difference found in part (a)]?
To know how many standard deviations is the max value apart from the sample mean, you have to divide the difference between those two values by the standard deviation
Dif/S= 58.65/23.39= 2.507 ≅ 2.51 Standard deviations
c. Convert the carrier's highest data speed to a z score.
The value is X= 76.6
Using the formula Z= (X - μ)/ δ= (76.6 - 17.95)/ 23.39= 2.51
d. If we consider data speeds that convert to z scores between minus−2 and 2 to be neither significantly low nor significantly high, is the carrier's highest data speed significant?
The Z value corresponding to the highest data speed is 2.51, considerin that is greater than 2 you can assume that it is significant.
I hope it helps!
Answer:
I don't understand the array of numbers as written in the question.
Step-by-step explanation:
See attached image