Since the jet bomber arrived over its Target at the same time as its fighter jet escorted, it took the jet bomber 0.34 h to reach the target.
<h3 />
To find the number of hours, we need to solve simultaneous equations.
<h3>
What are simultaneous equations?</h3>
Simultaneous equations are pair of equations which contain two unknowns.
<h3>How to calculate the number of hours the bomber jet took off?</h3>
Let
- D = distance travelled by both bomber jet and fighter jet.
- t = time bomber jet took off
- v = speed of bomber jet.
- T = time fighter jet took off and
- V = speed of fighter jet.
So, D = vt
D = 500t (1)
Also, D = VT
D = 60T (2)
Since jet bomber traveling 500 mph arrived over its Target at the same time as its fighter jet escorted which left the same fate 2.5 hours after the bomb took off.
T = t + 2.5
So, D = 60(t + 2.5) (3)
<h3>
The required simultaneous equations</h3>
D = 500t (1)
D = 60(t + 2.5) (3)
Equating equations (1) and (3), we have
500t = 60(t + 2.5)
500t = 60t + 150
500t - 60t = 150
440t = 150
t = 150/440
t = 15/44
t = 0.34 h
So, it took the jet bomber 0.34 hours to reach the target.
Learn more about simultaneous equations here:
brainly.com/question/27829171
#SPJ1
I'll assume you're supposed to compute the line integral of
over the given path
. By the fundamental theorem of calculus,

so evaluating the integral is as simple as evaluting
at the endpoints of
. But first we need to determine
given its gradient.
We have

Differentiating with respect to
gives

and we end up with

for some constant
. Then the value of the line integral is
.
Answer: -6=-4 or x=2,3
Step-by-step explanation:
Well if the original number is 10 and now it’s 15 that would make the percentage of increase 0.5%