<h3>Answers: </h3>
Angle 1 and 3: Vertical Angles
Angle 4 and 8: Corresponding Angles
Angles 4 and 6: Alternate Interior Angles
Angles 3 and 5: Alternate Interior Angles
Angles 7 and 8: Linear Pair
Angles 1 and 7: Alternate Exterior Angles
=================================================
Explanation:
Vertical angles are formed when you cross two lines to form an X shape. The vertical angles are opposite one another in this configuration.
Corresponding angles are ones that show up in the same corner of each four-corner crossing. In the case of angles 4 and 8, both are in the southwest corner of each four-corner crossing.
Alternate interior angles are angles in between parallel lines and on opposite sides of a transversal. Alternate exterior angles are similar, but they are outside the parallel lines.
A linear pair of angles are adjacent and supplementary (meaning they add to 180).
The number of a acute angle in a rectangle is 89 through 1 the obtuse angle in a rectangle is 91 through inf and a right angle of a rectangle is 90 degrees
U scammer it only says 5 points not 100
Answer:
x >= 20
Step-by-step explanation:
Solve for x:
Start to isolate x by subtracting the 6 from both sides.
Then multiply 10 from each side.
After that, you would get x >= 20
Answer:
B: II, IV, I, III
Step-by-step explanation:
We believe the proof <em>statement — reason</em> pairs need to be ordered as shown below
Point F is a midpoint of Line segment AB Point E is a midpoint of Line segment AC — given
Draw Line segment BE Draw Line segment FC — by Construction
Point G is the point of intersection between Line segment BE and Line segment FC — Intersecting Lines Postulate
Draw Line segment AG — by Construction
Point D is the point of intersection between Line segment AG and Line segment BC — Intersecting Lines Postulate
Point H lies on Line segment AG such that Line segment AG ≅ Line segment GH — by Construction
__
II Line segment FG is parallel to line segment BH and Line segment GE is parallel to line segment HC — Midsegment Theorem
IV Line segment GC is parallel to line segment BH and Line segment BG is parallel to line segment HC — Substitution
I BGCH is a parallelogram — Properties of a Parallelogram (opposite sides are parallel)
III Line segment BD ≅ Line segment DC — Properties of a Parallelogram (diagonals bisect each other)
__
Line segment AD is a median Definition of a Median