Answer:
a
Step-by-step explanation:
Answer:
Move 100 to the left of a
100
a
List of all of the solutions
ax100=100a
12= 100a
Answer:
a) 6x²/2x³-4
b) ![2ln (2x^3-4)+ C](https://tex.z-dn.net/?f=2ln%20%282x%5E3-4%29%2B%20C)
Step-by-step explanation:
a) Given the ln(2x³-4). We will use the chain rule in differentiating the function
If y = ln(2x³-4);
u = 2x³-4; du/dx = 3(2)x³⁻¹
du/dx = 6x²
y = ln u; dy/du = 1/u
According to chain rule, dy/dx = dy/dy*du/dx
dy/dx = 1/u * 6x²
dy/dx = 1/2x³-4 * 6x²
dy/dx = 6x²/2x³-4
Hence, the derivative of the given function is 6x²/2x³-4
b) Given an integral function
, the integral problem can be solved using integration by substitution method as shown below;
From the question, let y = 2x³-4... 1, dy/dx = 6x²
dx = dy/6x² ... 2
Substituting equation 1 and 2 into the question given;
![\int\limits {\frac{12x^2}{y} } \,\frac{dy}{6x^2} \\\\= \int\limits {\frac{2dy}{y} } \\\\= 2 \int\limits {\frac{dy}{y} }\\\\= 2lny + C\\substituting\ y = 2x^3-4\ into\ the \ resulting\ function\\\\= 2ln (2x^3-4)+ C](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7B12x%5E2%7D%7By%7D%20%7D%20%5C%2C%5Cfrac%7Bdy%7D%7B6x%5E2%7D%20%5C%5C%5C%5C%3D%20%5Cint%5Climits%20%7B%5Cfrac%7B2dy%7D%7By%7D%20%7D%20%5C%5C%5C%5C%3D%202%20%5Cint%5Climits%20%7B%5Cfrac%7Bdy%7D%7By%7D%20%7D%5C%5C%5C%5C%3D%202lny%20%2B%20C%5C%5Csubstituting%5C%20y%20%3D%202x%5E3-4%5C%20into%5C%20the%20%5C%20resulting%5C%20function%5C%5C%5C%5C%3D%202ln%20%282x%5E3-4%29%2B%20C)
Answer:
CDB and HGI
Step-by-step explanation:
Alternate Exterior Angles are a pair of angles on the outer side of each of those two lines but on opposite sides of the transversal.