Answer:
True
Explanation:
Scientific laws are often written as expressions that contains variables and are laws that are binding themselves.
In science, laws are natural phenomenon that draws from careful observations that holds through following a series of detailed study. Within the range of assumed parameters, a law will always hold true.
Most laws in science are denoted using mathematical variables which helps to interpret them.
The variables shows the relationship between the different parts of the law.
For example, Newton's law of universal gravitation is expressed mathematically as shown below;
F = 
where G, m and r are all variables.
G is the universal gravitation constant
m is mass
r is the distance between them.
F is the gravitational force.
Most scientific laws are often expressed in this format.
"An object in motion stays in motion, and an object at rest remains at rest unless acted upon by an unbalanced force" Said Sir Isaac Newton
Hope that helped! :)
Answer: the maximum heigth of the stadium at ist back wall is 151.32 ft
Explanation:
1. use the position (x) equation in parobolic movement to find the time (t)
565 ft = [frac{176 ft}{1 s\\}[/tex] * cos (35°) * t
t= 3.92 s
2. use the position (y) equation in parabolic movement to find de maximun heigth the ball reaches at 565 ft from the home plate.
y= [[frac{176 ft}{1 s\\}[/tex] * sen (35°) * 3.92 s] - 
y= 148.32 ft
3. finally add the 3 ft that exist between the home plate and the ball
148.32 ft + 3 ft = 151.32
Answer:
B).315mph
Explanation:
Let the speed of the plane = p
Let the speed of the wind = w
Set up the system equation as;
Relative V: Time: Distance:
in wind direction: p + w 2 700
against wind: p - w 2.5 700
2(p + w) = 700
2.5(p - w) = 700
2p + 2w = 700
2.5p - 2.5w = 700
2.5 x: 5p + 5w = 1750
2 x: 5p - 5w = 1400
10p = 3150
p = 315 mph
Therefore, he speed of the plane in still air is 315 mph
Answer: 86.47 g of carbon-14 must have been present in the sample 11,430 years ago.
Explanation:
Half-life of sample of carbon -14= 5,730 days

Let the sample present 11,430 years(t) ago = 
Sample left till today ,N= 0.060 g

![ln[N]=ln[N]_o-\lambda t](https://tex.z-dn.net/?f=ln%5BN%5D%3Dln%5BN%5D_o-%5Clambda%20t)
![\log[0.060 g]=\log[N_o]-2.303\times 0.00012 day^{-1}\times 11,430 days](https://tex.z-dn.net/?f=%5Clog%5B0.060%20g%5D%3D%5Clog%5BN_o%5D-2.303%5Ctimes%200.00012%20day%5E%7B-1%7D%5Ctimes%2011%2C430%20days)
![\log[N_o]=1.9369](https://tex.z-dn.net/?f=%5Clog%5BN_o%5D%3D1.9369)

86.47 g of carbon-14 must have been present in the sample 11,430 years ago.