Answer:
current forms when electromagnetic waves strike a semiconductor, removing some of its electrons.
Explanation:
Answer:

Explanation:
A 6.0-cm-diameter parallel-plate capacitor has a 0.46 mm gap.
What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500,000V/s?
Let given is,
The diameter of a parallel plate capacitor is 6 cm or 0.06 m
Separation between plates, d = 0.046 mm
The potential difference across the capacitor is increasing at 500,000 V/s
We need to find the displacement current in the capacitor. Capacitance for parallel plate capacitor is given by :
, r is radius
Let I is the displacement current. It is given by :

Here,
is rate of increasing potential difference
So

So, the value of displacement current is
.
In an exothermic reaction, there is a transfer of energy to the surroundings in the form of heat energy. The surroundings of the reaction will experience an increase in temperature. Many types of chemical reactions are exothermic, including combustion reactions, respiration & neutralization reactions of bases & acids.
Answer:
Explanation:
A general wave function is given by:

A: amplitude of the wave = 0.075m
k: wave number
w: angular frequency
a) You use the following expressions for the calculation of k, w, T and λ:



b) Hence, the wave function is:

c) for x=3m you have:

d) the speed of the medium:

you can see the velocity of the medium for example for x = 0:

It takes work to push charge through a change of potential.
There's no change of potential along an equipotential path,
so that path doesn't require any work.