Answer: -
The first step involves protonation of the carbonyl oxygen.
After protonation, the Alcohol oxygen now attacks the carbon of the carbonyl.
Thus a six membered ring is formed with 5 carbon atoms and 1 oxygen atom. The 1st position carbon atom has 2 OH groups.
One of these gets again protonated.
This leaves as water. With the loss of the H+, there results a carbonyl at 1 position.
Thus 5-hydroxypentanoic acid forms a lactone or 2-oxanone in presence of acid.
Answer:
Renewable energy
Explanation:
on the other hand, typically emits less CO2 than fossil fuels. In fact, renewables like solar and wind power—apart from construction and maintenance—don't emit any CO2 at all. With renewable energy, you can breathe easier, stay cooler, and create a more comfortable world for generations to come.
The energy range expected is 6.6 × 10^-19 J < E < 7.33 × 10^-19 J
The energy of the photon is given by;
E = hc/λ
E = energy of the photon
h = Plank's constant
c = speed of light
λ = wavelength of light
For the upper boundary range;
E = ?
h = 6.6 × 10^-34 Js
c = 3 × 10^8 m/s
λ = 270 × 10^-9
E = 6.6 × 10^-34 Js × 3 × 10^8 m/s / 270 × 10^-9
E = 7.33 × 10^-19 J
For the lower range;
E = ?
h = 6.6 × 10^-34 Js
c = 3 × 10^8 m/s
λ =300 × 10^-9
E = 6.6 × 10^-34 Js × 3 × 10^8 m/s / 300 × 10^-9
E = 6.6 × 10^-19 J
Hence, the energy range 6.6 × 10^-19 J < E < 7.33 × 10^-19 J
Learn more: brainly.com/question/24857760
<span><u><em>Answer:</em></u>
All of the above
<u><em>Explanation:</em></u>
Vertebrates are a class of creatures falling under kingdom "<u>Animalia</u>" that are characterized by the presence of an internal skeleton composed of bones.
<u>Vertebrates are characterized by the following:</u>
1- presence of internal skeleton
2- developed brain
3- the presence of an advanced nervous system connected to the brain
4- presence of muscles that allow movement
5- protective skin
6- circulation of blood in the bodies in the vessels
Comparing the mentioned characteristics with the options given, we will find that the most suitable answer is: <u>"all of the above"</u>.
Hope this helps :)</span>
Yes, electron follows the same path when it absorb and loses energy.
Yes, when an electron moves from a higher orbit to a lower orbit it always follow the same path as it moves from a lower orbit to a higher orbit. When electron absorb energy it has the power to move from lower orbit to higher orbit or energy level.
While on the other hand, when an electron loses that energy, it comes back to its original position from which it moves earlier when it absorb energy so we conclude that electron follows the same path when it absorb and loses energy.
Learn more: brainly.com/question/24962163