Answer:
• One mole of oxygen is equivalent to 16 grams.
→ But at STP, 22.4 dm³ are occupied by 1 mole.

The answer is: II.The endpoint is recorded when the solution is dark red in color rather than light pink.
The endpoint is the point at which the indicator changes colour in a colourimetric titration and that is point when titration must stop.
Phenolphthalein is colorless in acidic solutions and pink in basic solutions. If this indicator change color to dark red, more base is added and endpoint is not accurate.
If the the acid is spilled before titration, that does not make endpoint wrong and molar mass can be calculated.
In this example we can take acetic acid as carboxylic acid; basic salt sodium acetate CH₃COONa is formed from the reaction between weak acid (in this example acetic acid CH₃COOH) and strong base (in this example sodium acetate NaOH).
Balanced chemical reaction of acetic acid and sodium hydroxide:
CH₃COOH(aq) + NaOH(aq) → CH₃COONa(aq) + H₂O(l).
Neutralization is is reaction in which an acid (in this example vinegar or acetic acid CH₃COOH) and a base react quantitatively with each other.
Iodine 131 and iodine 126 are the same in the sense that, they both have the same number of electrons and protons in their atoms, it is only the number of their neutrons that is different. Iodine 131 has 78 neutrons while iodine 126 has 73 neutrons.
Answer:
the properties of catalyst are
it remains unchanged after chemical reactions
it accelerate or deaccelerate the reaction without taking part in it
Explanation:
they are used to convert raw materials into useful one
catalyst are integral in making plastics
Answer:
1.4 × 10² mL
Explanation:
There is some info missing. I looked at the question online.
<em>The air in a cylinder with a piston has a volume of 215 mL and a pressure of 625 mmHg. If the pressure inside the cylinder increases to 1.3 atm, what is the final volume, in milliliters, of the cylinder?</em>
Step 1: Given data
- Initial volume (V₁): 215 mL
- Initial pressure (P₁): 625 mmHg
- Final pressure (P₂): 1.3 atm
Step 2: Convert 625 mmHg to atm
We will use the conversion factor 1 atm = 760 mmHg.
625 mmHg × 1 atm/760 mmHg = 0.822 atm
Step 3: Calculate the final volume of the air
Assuming constant temperature and ideal behavior, we can calculate the final volume of the air using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 0.822 atm × 215 mL / 1.3 atm = 1.4 × 10² mL