Answer:
32.6%
Explanation:
Equation of reaction
2KClO₃ (s) → 2KCl (s) + 3O₂ (g)
Molar mass of 2KClO₃ = 245.2 g/mol ( 122.6 × 2)
Molar volume of Oxygen at s.t.p = 22.4L / mol
since the gas was collected over water,
total pressure = pressure of water vapor + pressure of oxygen gas
0.976 = 0.04184211 atm + pressure of oxygen gas at 30°C
pressure of oxygen = 0.976 - 0.04184211 = 0.9341579 atm = P1
P2 = 1 atm, V1 = 789ml, V2 = unknown, T1 = 303K, T2 = 273k at s.t.p
Using ideal gas equation
=
V2 =
V2 = 664.1052 ml
245.2 yielded 67.2 molar volume of oxygen
0.66411 will yield =
= 2.4232 g
percentage of potassium chlorate in the original mixture =
= 32.6%
Answer:
The molar mass of the gas is 44 g/mol
Explanation:
It is possible to solve this problem using Graham's law that says: Rates of effusion are inversely dependent on the square of the mass of each gas. That is:

If rate of effusion of nitrogen is Xdistance / 48s and for the unknown gas is X distance / 60s and mass of nitrogen gas is 28g/mol (N₂):

6,61 = √M₂
44g/mol = M₂
<em>The molar mass of the gas is 44 g/mol</em>
<em></em>
I hope it helps!
The representative particle for nitrogen is a molecule.
The number of protons in an atoms determines the atoms identity. Electrons determine the electrical charge.
Answer:
it is because of the bacteria and different things that go into waters such as ponds, rivers, lakes, seas, oceans, streams, and other body of waters and I should also add the chemicals that go into them as well
Explanation: