<h2>
Answer:</h2>
ZINC
<h2>
Explanation:</h2>
<em>To identify the element based on the informartion given, we have to find the molar mass since this mass is unique to each element.</em>
Molar mass = mass ÷ moles
<em>We already know the mass based on the question, as such we now need to find the # of moles.</em>
Since 1 mole contains 6.02214 × 10²³ atoms
then let x moles contain 4.19 × 10²³ atoms <em>(given in the question)</em>
<em> </em><em> </em> ⇒ x = (4.19 × 10²³ atoms × 1 mol) ÷ 6.02214 × 10²³ atoms
x = 0.69577 mol
<em>Now that we have the moles we can substitute it into the molar mass equation and solve for the molar mass.</em>
⇒ molar mass = 45.6 g ÷ 0.69577 mol
⇒ molar mass ≈ 65.54 g/mol
This molar mass is closest to that of ZINC.
Answer:
The correct answers are:
"Only about 3 percent of Earth's water is fresh water."
"About 75% percent of the fresh water on Earth is frozen in ice sheets."
"The largest source of usable fresh water is groundwater."
Explanation:
3 percent of Earth's water is most certainly fresh water. Confirmed with a few fact checks.
The largest source of usable fresh water on Earth is groundwater. It's more difficult to access but it's there and much more usable than water say frozen in ice on the sea.
The most correct option left would be 75% of Earth's freshwater being in ice sheets even though it's about 70%.
<u>Answer:</u> The solubility product of silver (I) phosphate is 
<u>Explanation:</u>
We are given:
Solubility of silver (I) phosphate = 1.02 g/L
To convert it into molar solubility, we divide the given solubility by the molar mass of silver (I) phosphate:
Molar mass of silver (I) phosphate = 418.6 g/mol

Solubility product is defined as the product of concentration of ions present in a solution each raised to the power its stoichiometric ratio.
The chemical equation for the ionization of silver (I) phosphate follows:
3s s
The expression of
for above equation follows:

We are given:

Putting values in above expression, we get:

Hence, the solubility product of silver (I) phosphate is 