m = mass of the car moving in horizontal circle = 1750 kg
v = Constant speed of the car moving in the horizontal circle = 15 m/s
r = radius of the horizontal circular track traced by the car = 45.0 m
F = magnitude of the centripetal force acting on the car
To move in a circle . centripetal force is required which is given as
F = m v²/r
inserting the above values in the formula
F = (1750) (15)²/(45)
F = (1750) (225)/(45)
F = 1750 x 5
F = 8750 N
Explanation:
Amperage is the unit of electric current. It describes the strength of the electric current in a circuit.
The voltage is the driving force of the current in a circuit
Power is a function of voltage and current in the circuit.
Current is designate as I
Voltage as V
Power as P
I =
Where R is the resistance to flow of electricity
P = I x V =
The unit of power is watts and voltage is volts
learn more:
Voltage brainly.com/question/6949231
#learnwithBrainly
-- As far as we know, the forces on the wheelbarrow are balanced.
-- That tells us that the net force on the wheelbarrow is zero, just
as if there were no forces acting on it at all.
-- That tells us that the wheelbarrow's acceleration is zero ... its
speed and direction of motion are not changing.
-- That tells us that the wheelbarrow is moving in a straight line
at a constant speed. It's very possible that relative to us, the speed
may be zero, but we can't tell that from the given information.
Answer:
Mixtures are materials that contain two or more chemical substances dispersed among each other (mixed together). If no chemical reaction occurs when two materials are mixed, they form a mixture. The chemical properties of the components don't change.
Explanation:
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .