Hello.
The answer would be <span> 0.5 s
Have a nice day</span>
Answer: y = 2.4×10^-6m or y= 2.4μm
Explanation: The formulae for the distance between the central bright fringe to any other fringe in pattern is given as
y = R×mλ/d
Where y = distance between nth fringe and Central bright spot fringe.
m = position of fringe = 4
λ = wavelength of light= 600nm = 600×10^-9 m
d = distance between slits = 1.50×10^-5m
R = distance between slit and screen = 2m
y = 2 × 4 × 600×10^-9/2
y = 4800×10^-9/2
y = 2400 × 10^-9
y = 2.4×10^-6m or y= 2.4μm
Answer:
Velocity.
Explanation:
Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.
As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:
Horizontal range: As per expression:
R= (
*sin2θ)/g
the range depending on the square of the initial velocity.
Maximum height: As per expression:
H= (
*
θ
)/2g
the maximum distance also depends upon square of the initial velocity.
Answer:
P = VI = (IR)I = I2R
Explanation:
What the equation means is that if you double the current you end up with 4 times the power loss. It's like the area of carpet you need for a room - if you make the room twice as long and twice as wide you need 4x as much carpet. The physical explanation is that the voltage difference along a wire depends on the current - more current flowing with a resistance means more voltage (pressure of electricity if you like) is built up.
This extra voltage means more power. So if you double the current your would double the power, but you also double the voltage which doubles the power again = 4x as much power. P = VI = (IR)I = I2R
I hope this helps you out, if I'm wrong, just tell me.