Answer:
Explanation:
it is acceleration because we know that
F=ma
a=F/m
a=300N/25 kg
a=12 m/s^2
Answer:
-6.44 m/s²
Explanation:
Given:
Δx = 60 m
v₀ = 27.8 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (27.8 m/s)² + 2a (60 m)
a = -6.44 m/s²
Answer:
Explanation:
This problem relates to interference of light in thin films .
The condition of bright fringe in thin films which is sandwitched by two layers of medium having lesser refractive index is as follows.
2nt = (2n+1) λ / 2 , n is refractive index of thin layer , t is its thickness , λ is wavelength of light .
2 x 1.5 t = λ / 2 , if n = 0 for minimum thickness.
2 x 1.5 t = 600 / 2 nm
t = 100 nm .
If the tension in the rope is 160 n, - 43200 J work doen by the rope on the skier during a forward displacement of 270 m.
Given,
Tension force in the rope is (T) = 160 N
Displacement of the skier (S) = 270 m
The displacement takes place in forward direction while the direction of the tension in the rope is opposite to it.
Therefore, work done by the rope on the skier is,

⇒
Hence work done by the rope is - 43200 J.
Learn more about force problems on
brainly.com/question/26850893
#SPJ4
Answer:
41.74 m/s
Explanation:
The energy used to draw the bowstring = the kinetic energy of the arrow.
Fd = 1/2mv²................................ Equation 1
Where F = force, d = distance move string, m = mass of the arrow, v = speed of the arrow.
make v the subject of the equation
v = √(2Fd/m)...................... Equation 2
Given: F = 201 N, m = 0.3 kg, d = 1.3 m.
Substitute into equation 2
v = √(2×201×1.3/0.3)
v = √(1742)
v = 41.74 m/s.
Hence the arrow leave the bow with a speed of 41.74 m/s