So you not only know<span> how fast it is going, but where it is going.</span>
Answer:
0.0327 m
Explanation:
m = 2 kg
ω = 24 rad/s
A = 0.040 m
Let at position y, the potential energy is twice the kinetic energy.
The potential energy is given by
U = 1/2 m x ω² x y²
The kinetic energy is given by
K = 1/2 m x ω² x (A² - y²)
Equate both the energies as according to the question
1/2 m x ω² x y² = 2 x 1/2 m x ω² x (A² - y²)
y² = 2 A² - 2 y²
3y² = 2A²
y² = 2/3 A²
y = 0.82 A = 0.82 x 0.040 = 0.0327 m
Answer:
Resistance = 400000 Ohms
Explanation:
Given the following data;
Voltage = 1200 V
Current = 3 mA = 3/1000 = 0.003 A
To find the resistance;
Voltage = current * resistance
Resistance = 1200/0.003
Resistance = 400000 Ohms
Meters would be the best way to record the length
The cat has two directions of motions:
The horizontal motion = Dx = 2.2 m
The vertical motion = Dy = -1.3 m (negative sign indicates that the cat is falling)
a = 9.8 m/sec^2
Vy = zero (since you are not moving up)
From the laws of motion:
<span>Dy = Vyt + 0.5ayt^2
</span>-1.3 = 0(t) + 0.5(-9.8)t^2
<span>t = 0.52s
</span>
Then, again using the laws of motion (but for the horizontal direction this time)
Dx = Vxt
<span>2.2 = Vx0.52 </span>
<span>Vx = 2.2/0.52 </span>
<span>= 4.23 m/s
</span>
<span>Therefore the cat's speed when it slid off the table is 4.23 m/s horizontally.</span>