Answer:
True
Explanation:
Pressure is defined as:

where
F is the magnitude of the force perpendicular to the surface
A is the surface
Therefore, pressure is inversely proportional to the area of the surface:

this means that, assuming that the forces in the two situations (which have same magnitude) are both applied perpendicular to the surface, the force exerted over the smaller area will exert a greater pressure. Hence, the statement"
<em>"A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area"</em>
is true.
Look it up on google it has the answer
Answer:
mass = 0.18 [kg]
Explanation:
This is a classic problem where we can apply the definition of density which is equal to mass over volume.
![density = \frac{mass}{volume} \\\\where:\\volume = 1 [m^3]\\density = 0.18[kg/m^3]](https://tex.z-dn.net/?f=density%20%3D%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5C%5C%5Cwhere%3A%5C%5Cvolume%20%3D%201%20%5Bm%5E3%5D%5C%5Cdensity%20%3D%200.18%5Bkg%2Fm%5E3%5D)
mass = 0.18*1
mass = 0.18 [kg]
Answer:
The wire now has less (the half resistance) than before.
Explanation:
The resistance in a wire is calculated as:

Were:
R is resistance
is the resistance coefficient
l is the length of the material
s is the area of the transversal wire, in the case of wire will be circular area (
).
So if the lenght and radius are doubled, the equation goes as follows:

So finally because the circular area is a square function, the resulting equation is half of the one before.
Answer:
Explanation:
A.
Given:
Vo = 21 m/s
Vf = 0 m/s
Using equation of Motion,
Vf^2 = Vo^2 - 2aS
S = (21^2)/2 × 9.8
= 22.5 m.
B.
Given:
S = 22.5 + 21 mm
= 22.521 m
Vo = 0 m/s
Using the equation of motion,
S = Vo × t + 1/2 × a × t^2
22.521 = 0 + 1/2 × 9.8 × t^2
t^2 = (2 × 22.521)/9.8
= 4.6
t = 2.14 s