Our sun is a medium mass star, so it wouldn't be too different from the sun's life cycle. It is born, lives for about 10 billion years and then dies. ... As a medium mass star nears the end of its life, it runs out of hydrogen which it has been fusing onto helium in its core for its whole life.
Unbalanced because if it is pushing then stopping, that means that it is unbalanced.
The sun's energy is refferd to solor energy
1) At the moment of being at the top, the piston will not only tend to push the penny up but will also descend at a faster rate at which the penny can reach in 'free fall', in that short distance. Therefore, at the highest point, the penny will lose contact with the piston. Therefore the correct answer is C.
2) To solve this problem we will apply the equations related to the simple harmonic movement, hence we have that the acceleration can be defined as

Where,
a = Acceleration
A = Amplitude
= Angular velocity
From a reference system in which the downward acceleration is negative due to the force of gravity we will have to



From the definition of frequency and angular velocity we have to




Therefore the maximum frequency for which the penny just barely remains in place for the full cycle is 2.5Hz