Explanation:
Given that,
Force acting on the child, F = 310 N
Length of the ropes, d = 2.1 m
We need to find the gravitational potential energy of the child–Earth system relative to the child's lowest position when the ropes are horizontal. The potential energy is simply given by :

Hence, this is the required solution.
Ans: Kinetic and potential energies are found in all objects. If an object is moving, it is said to have kinetic energy (KE). Potential energy (PE) is energy that is "stored" because of the position and/or arrangement of the object. The classic example of potential energy is to pick up a brick.
Answer:
The Rock
Explanation:
The paper is very thin and light so it has more air reisistance which will cause it to fall slower than the rock that has a larger density.
Answer:
P₃ > P₁ > P₂
Explanation:
To rank pressure of the given situation
a) we know
Pressure at height h below
P = ρ g h
density of salt water, ρ = 1029 kg/m³
P₁ = 1029 x 10 x 0.2
P₁ = 2058 Pa
b) density of fresh water, ρ = 1000 kg/m³
P₂ = 1000 x 10 x 0.2
P₂ = 2000 Pa
c) density of mercury, ρ = 13593 kg/m³
P₃ = 13593 x 10 x 0.05
P₃ = 6796.5 Pa
Rank of Pressures from highest to lowest
P₃ > P₁ > P₂
Answer:
So it will lift the mass by h = 17 m
Explanation:
As per energy conservation we know that

here we know that


now we have


so work done by the engine is 250 J
now we have


