Answer:
Step-by-step explanation:
SIDE OF THE SQUARE = 6 cm = DIAMETER OF THE CIRCLE.
AREA OF THE CIRCLE = (Pi/4)*6^2 = [(22/7)/4]*36 = 22*9/7 = 28.2857 sqcm
or
First, find the side length of the square. (Find the square root of 36 cm^2, to get 6 cm as the side length of the square).
Second, find the radius of the circle inside the square. The side length of the square is the diameter of the circle. Radius is half of the diameter. So, half of 6 cm is 3 cm; this is the radius of the circle.
Third, find the area of the circle by using the formula, A = pi x radius x radius
so, Area = 3.14 x 3 cm x 3 cm
by calculation we get the area of the circle is 28.26 cm^2
Where pi is a constant of 22/7 or 3.14
Multiply 2/3 by 8 and you will get 16/3 or 5.33 repeating.
Answer:
168 in²
Step-by-step explanation:
The square would be 36 in²
Area of a triangle is A= 1/2 bh
A = 1/2 (11 x 6), A= 1/2 (66)
1/2 (66) = 33 in², which is the area of a triangle.
Then you multiply 33 x 4 to get the area of all the triangles, which is 132 in²
You add the area of the square to the area of the triangles, which is 168 in².
Answer:
The IQR is given by:
![IQR = Q_3 -Q_1 = 28-18= 10](https://tex.z-dn.net/?f=%20IQR%20%3D%20Q_3%20-Q_1%20%3D%2028-18%3D%2010)
If we want to find any possible outliers we can use the following formulas for the limits:
![Lower= Q_1 - 1.5 IQR](https://tex.z-dn.net/?f=Lower%3D%20Q_1%20-%201.5%20IQR)
![Upper= Q_3 + 1.5 IQR](https://tex.z-dn.net/?f=Upper%3D%20Q_3%20%2B%201.5%20IQR)
And if we find the lower limt we got:
![Lower= Q_1 - 1.5 IQR= 18-1.5*10 = 3](https://tex.z-dn.net/?f=Lower%3D%20Q_1%20-%201.5%20IQR%3D%2018-1.5%2A10%20%3D%203)
![Upper= Q_3 + 1.5 IQR= 28+1.5*10= 43](https://tex.z-dn.net/?f=Upper%3D%20Q_3%20%2B%201.5%20IQR%3D%2028%2B1.5%2A10%3D%2043)
So then the left boundary for this case would be 3 days
Step-by-step explanation:
For this case we have the following 5 number summary from the data of 144 values:
Minimum: 9 days
Q1: 18 days
Median: 21 days
Q3: 28 days
Maximum: 56 days
The IQR is given by:
![IQR = Q_3 -Q_1 = 28-18= 10](https://tex.z-dn.net/?f=%20IQR%20%3D%20Q_3%20-Q_1%20%3D%2028-18%3D%2010)
If we want to find any possible outliers we can use the following formulas for the limits:
![Lower= Q_1 - 1.5 IQR](https://tex.z-dn.net/?f=Lower%3D%20Q_1%20-%201.5%20IQR)
![Upper= Q_3 + 1.5 IQR](https://tex.z-dn.net/?f=Upper%3D%20Q_3%20%2B%201.5%20IQR)
And if we find the lower limt we got:
![Lower= Q_1 - 1.5 IQR= 18-1.5*10 = 3](https://tex.z-dn.net/?f=Lower%3D%20Q_1%20-%201.5%20IQR%3D%2018-1.5%2A10%20%3D%203)
![Upper= Q_3 + 1.5 IQR= 28+1.5*10= 43](https://tex.z-dn.net/?f=Upper%3D%20Q_3%20%2B%201.5%20IQR%3D%2028%2B1.5%2A10%3D%2043)
So then the left boundary for this case would be 3 days
3. Look at the picture.
We have the right angle triangle. We know the sum of measures of angles in triangle is equal 180°. Therefore:
![x^o+90^o+43^o=180^o\\\\x^o+133^o=180^o\ \ \ |-133^o\\\\x^o=47^o](https://tex.z-dn.net/?f=x%5Eo%2B90%5Eo%2B43%5Eo%3D180%5Eo%5C%5C%5C%5Cx%5Eo%2B133%5Eo%3D180%5Eo%5C%20%5C%20%5C%20%7C-133%5Eo%5C%5C%5C%5Cx%5Eo%3D47%5Eo)
![Answer:\ \boxed{47^o}](https://tex.z-dn.net/?f=Answer%3A%5C%20%5Cboxed%7B47%5Eo%7D)
4.
Look at the picture.
Use Pythagorean theorem:
![x^2+14^2=(10+x)^2\\\\x^2+196=10^2+2\cdot10\cdot x+x^2\ \ \ \ |-x^2\\\\196=100+20x\ \ \ |-100\\\\20x=96\ \ \ |:20\\\\x=4.8](https://tex.z-dn.net/?f=x%5E2%2B14%5E2%3D%2810%2Bx%29%5E2%5C%5C%5C%5Cx%5E2%2B196%3D10%5E2%2B2%5Ccdot10%5Ccdot%20x%2Bx%5E2%5C%20%5C%20%5C%20%5C%20%7C-x%5E2%5C%5C%5C%5C196%3D100%2B20x%5C%20%5C%20%5C%20%7C-100%5C%5C%5C%5C20x%3D96%5C%20%5C%20%5C%20%7C%3A20%5C%5C%5C%5Cx%3D4.8)
![Used:\ (a+b)^2=a^2+2ab+b^2](https://tex.z-dn.net/?f=Used%3A%5C%20%28a%2Bb%29%5E2%3Da%5E2%2B2ab%2Bb%5E2)
![Answer:\ \boxed{4.8\ units}](https://tex.z-dn.net/?f=Answer%3A%5C%20%5Cboxed%7B4.8%5C%20units%7D)
5.
TRUE: 1; 2; 4
6.
We find a slope of the line OP:
![m=\dfrac{y_2-y_1}{x_2-x_1}\\\\O(2;\ 6)\to x_1=2;\ y_1=6\\\\P(4;\ 3)\to x_2=4;\ y_2=3\\\\m=\dfrac{3-6}{4-2}=\dfrac{-3}{2}](https://tex.z-dn.net/?f=m%3D%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D%5C%5C%5C%5CO%282%3B%5C%206%29%5Cto%20x_1%3D2%3B%5C%20y_1%3D6%5C%5C%5C%5CP%284%3B%5C%203%29%5Cto%20x_2%3D4%3B%5C%20y_2%3D3%5C%5C%5C%5Cm%3D%5Cdfrac%7B3-6%7D%7B4-2%7D%3D%5Cdfrac%7B-3%7D%7B2%7D)
We have:
![OP:\ y=-\dfrac{3}{2}x+b](https://tex.z-dn.net/?f=OP%3A%5C%20y%3D-%5Cdfrac%7B3%7D%7B2%7Dx%2Bb)
Now, we must find the slope of the line perpendicular to the line OP.
We know:
![k:y=m_1x+b;\ l:y=m_2x+c\\\\k\ \perp\ l\iff m_1m_2=-1](https://tex.z-dn.net/?f=k%3Ay%3Dm_1x%2Bb%3B%5C%20l%3Ay%3Dm_2x%2Bc%5C%5C%5C%5Ck%5C%20%5Cperp%5C%20l%5Ciff%20m_1m_2%3D-1)
therefore
![-\dfrac{3}{2}m_2=-1\ \ \ |\cdot\left(-\dfrac{2}{3}\right)\\\\m_2=\dfrac{2}{3}](https://tex.z-dn.net/?f=-%5Cdfrac%7B3%7D%7B2%7Dm_2%3D-1%5C%20%5C%20%5C%20%7C%5Ccdot%5Cleft%28-%5Cdfrac%7B2%7D%7B3%7D%5Cright%29%5C%5C%5C%5Cm_2%3D%5Cdfrac%7B2%7D%7B3%7D)
So. We have the answer! :)