Answer: The pressure required is 0.474 atm
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
The equation is,

where,
= initial pressure of gas = 1.0 atm
= final pressure of gas = ?
= initial volume of gas = 
= final volume of gas =
(
Now put all the given values in the above equation, we get:


The pressure required is 0.474 atm
Answer:
Explanation:
The molecular mass of C2H6 is approximately 30 or [(2 x 12) + (6 x 1)]. Therefore the molecule is about 2.5 times as heavy as the 12C atom or about the same mass as the NO atom with a molecular mass of 30 or (14+16).
Answer:
<em>One mole of anything is 6.022×1023 everythings, including atoms. Multiply the moles Fe by 6.022×1023 atoms/mol. 3.77mol Fe ×6.022×1023atoms Fe1mol Fe =2.27×1024 atoms Fe rounded to three significant figures.</em>
Make note of it and learn from her mistakes :)
Answer:
299.14 K or 26°C
Explanation:
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas.
The ideal gas law is often written as
PV = nRT
where P ,V and T are the pressure, volume and absolute temperature;
n is the number of moles of gas and R is the ideal gas constant.
n=1.10 x 10^5 mol
V= 2.70 x 10^6 L
P= 1.00 atm= 101.325 kPa
R= 8.314 kPa*L/ mol*K
when the formula is rearranged, T=PV/ nR
T = (101.325kPa * 2.70 x 10^6 L)/ (1.10 x 10^5 mol * 8.314 kPa*L/ mol*K)
T = 299.1421917 K
or
T = 299.14 - 273.15 = 25.99 = 26°C