Answer: -112200J
Explanation:
The amount of heat (Q) released from an heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = ?
Mass of water vapour = 30.0g
C = 187 J/ G°C
Φ = (Final temperature - Initial temperature)
= 100°C - 120°C = -20°C
Then apply the formula, Q = MCΦ
Q = 30.0g x 187 J/ G°C x -20°C
Q = -112200J (The negative sign does indicates that heat was released to the surroundings)
Thus, -112200 joules of heat is released when cooling the superheated vapour.
the answer you have chosen is correct
Answer:
We can use heat = mcΔT to determine the amount of heat, but first we need to determine ΔT. Because the final temperature of the water is 55°C and the initial temperature is 20.0°C, ΔT is as follows:
ΔT = Tfinal − Tinitial = 55.0°C − 20.0°C = 35.0°C
given the specific heat of water as 1 cal/g·°C. Substitute the known values into heat = mcΔT and solve for amount of heat:
= heat=(75.0 g)(1 cal/ g· °C )(35.0°C) =
= 75x1x35=2625 cal
Answer:
<em>Varying frequency</em> between both waves accounts for difference in speed.
Explanation:
The speed of a wave is dependent on four major factors:
- wavelength
- frequency
- medium, and
- temperature
Assuming equal temperature and medium of travel of these sound waves, and given that the wavelength (that is distance of travel) is equal, the only varying factor would be their frequency.
Wave speed is calculated by multiplying the wavelength times the frequency
⇒ Speed = λ * <em>f</em>