Carbon-14 and Uranium-238 have something we call a half live, which is basically a known time period for it to change half of its C-14 or U-238 radioactively decay. Since we know how long that is 5730 years for Carbon-14 for half a sample to deteriorate, than we can figure out how old it is.
Answer:K subscript e q equals StartFraction StartBracket upper C upper O subscript 2 EndBracket StartBracket upper C a upper O EndBracket over StartBracket upper C a upper C upper O subscript 3 EndBracket EndFraction
Explanation: the answer has it's root in Law of mass action which states that; the rate of a chemical reaction is directly proportional to the product of the concentrations of the reactants raised to their respective stoichiometric coefficients.
Answer:
238,485 Joules
Explanation:
The amount of energy required is a summation of heat of fusion, capacity and vaporization.
Q = mLf + mC∆T + mLv = m(Lf + C∆T + Lv)
m (mass of water) = 75 g
Lf (specific latent heat of fusion of water) = 336 J/g
C (specific heat capacity of water) = 4.2 J/g°C
∆T = T2 - T1 = 119 - (-20) = 119+20 = 139°C
Lv (specific latent heat of vaporization of water) = 2,260 J/g
Q = 75(336 + 4.2×139 + 2260) = 75(336 + 583.8 + 2260) = 75(3179.8) = 238,485 J
Answer:
A pH scale reading 13 indicates a strong base.
Explanation:
From my understanding:
1 -4 is a strong acid
4 - 7 is weak acid
7 - 9 is a weak base
9 - 14 is a strong base