Reacting with metals is not a common property of bases. Bases do however react with acids.
<span>of, relating to, affecting, or consisting of a vessel or vessels, especially those that carry blood</span>
The answer is false because receiving an electrical shock is not an example of a negative punishment if you forget to turn off the power.
The sample contains 1.00 mol H₂O.
Moles of water = 18.0 g H₂O × 1 mol H₂O/18.0 g H₂O = 1.00 mol H₂O
Answer:
Part A
![rate= 4.82*10^{-3}s^{-1} * [N2O5]](https://tex.z-dn.net/?f=rate%3D%204.82%2A10%5E%7B-3%7Ds%5E%7B-1%7D%20%2A%20%5BN2O5%5D)
Part B

Explanation:
Part A
<em>The rate law is the equation that relates the rate of the reaction, the kinetic constant and the concentration of the reactant or reactants.</em>
For the given chemical reaction we can write a general expression for the rate law as follows:
![rate= k * [N2O5]^{x}](https://tex.z-dn.net/?f=rate%3D%20k%20%2A%20%5BN2O5%5D%5E%7Bx%7D)
where k is the rate constant and x is the order of the reaction with respect of N2O5 concentration. Particularly, <em>a first order reaction kinetics indicate that the rate of the reaction is directly proportional to the concentration of only one reactant</em>. Then x must be 1.
Replacing the value of the rate constant given in the text we can arrive to the following expression for the rate law:
![rate= 4.82*10^{-3}s^{-1} * [N2O5]](https://tex.z-dn.net/?f=rate%3D%204.82%2A10%5E%7B-3%7Ds%5E%7B-1%7D%20%2A%20%5BN2O5%5D)
Part B
Replacing the value of the concentration of N2O5 given, we can get the rate of reaction:

