Answer:
a) 0.50575,
b) 0.042
Step-by-step explanation:
Example 1.5. A person goes shopping 3 times. The probability of buying a good product for the first time is 0.7.
If the first time you can buy good products, the next time you can buy good products is 0.85; (I interpret this as, if you buy a good product, then the next time you buy a good product is 0.85).
And if the last time I bought a bad product, the next time I bought a good one is 0.6. Calculate the probability that:
a) All three times the person bought good goods.
P(Good on 1st shopping event AND Good on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Good on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st and 2nd shopping events yield Good) =
(0.7)(0.85)(0.85) =
0.50575
b) Only the second time that person buys a bad product.
P(Good on 1st shopping event AND Bad on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Bad on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st is Good and 2nd is Bad shopping events) =
(0.7)(1-0.85)(1-0.6) =
(0.7)(0.15)(0.4) =
0.042
Answer:
294 inches squred
Step-by-step explanation:
3 x 10 = 30
3 x 9 = 27
10 x 9 = 90
2(30) + 2(27) + 2(90) = 294
Total number of squares = 60 + 80 + 110 + 115 + 95 + 40 = 500
1000/500 = 2 so each little square represents 2 people
60 x 2 as there’s 60 squares from 6-10 so answer is 120
Answer:
Step-by-step explanation:
Given that:
Population Mean = 7.1
sample size = 24
Sample mean = 7.3
Standard deviation = 1.0
Level of significance = 0.025
The null hypothesis:

The alternative hypothesis:

This test is right-tailed.

Rejection region: at ∝ = 0.025 and df of 23, the critical value of the right-tailed test 
The test statistics can be computed as:



t = 0.980
Decision rule:
Since the calculated value of t is lesser than, i.e t = 0.980 <
, then we do not reject the null hypothesis.
Conclusion:
We conclude that there is insufficient evidence to claim that the population mean is greater than 7.1 at 0.025 level of significance.
I think B but don't take my word!!!