Answer:Electromagnetic Energy Example One
activity: cellphones
type of electromagnetic: radio waves
description: we all use our phones to make phone calls and to send a text!
Electromagnetic Energy Example two
activity: microwave
type of electromagnetic: microwave radiation
description: The microwave radiation is absorbed by water molecules in the food which converts to heat intern heats the food do to high levels of radiation being emitted into the food!
Explanation:
i hope this helps you sorry if it doesn't
Answer:
C = 1.01
Explanation:
Given that,
Mass, m = 75 kg
The terminal velocity of the mass, 
Area of cross section, 
We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,
R = W
or

Where
is the density of air = 1.225 kg/m³
C is drag coefficient
So,

So, the drag coefficient is 1.01.
The physical model of the sun's interior has been confirmed by observations of neutrino and seismic vibrations.
<u>Explanation:</u>
Sun's interior is composed of very high temperature and solar flares. So it is very difficult to understand the interior of the sun. But by using the vibrations of neutrino and seismic waves emitted by the solar waves, the physical model can be assumed.
As the interior of the sun performs continuous chain of hydrogen cycle. So the continuous emission of energy from the chain reaction releases neutrino. So these vibrations in neutrino and seismic vibrations, the physical model can be assumed easily.
If your speed changes from 10 km/h to 6 km/h then
you have an acceleration.
Whether it's a positive or negative one completely depends
on which direction you decided to call the positive direction,
when you started considering your speed and its changes.
If you decided to call the direction in which you're traveling
the positive direction, then a decrease in your speed is a
negative acceleration.
But you could just as easily have said that you're traveling
in the negative direction. If you did that, then a decrease in
your speed would be a positive acceleration.
It's completely up to you, and how you define things.
frequency is how many times a sec the thing vibrates
amp is the size of the vibration
wavelength is distance peak to peak for example