I am walking to the end of the room holding three textbooks.
Playing tug of war
Moving boxes to move out of your house
<span>Volume of cylinder = pi*r*2*L
As, from the above formula,volume is directly proportional to length,
So, if we increase in length also increases in volume by 0.22%
we know
</span><span>density=<span><span>mass/</span><span>volume
As, density is inversely proportional to volume it means increasing in volume decreases the density by 50.22%
</span></span></span>
Answer:
The final acceleration becomes (1/3) of the initial acceleration.
Explanation:
The second law of motion gives the relationship between the net force, mass and the acceleration of an object. It is given by :

m = mass
a = acceleration
According to given condition, if the mass of a sliding block is tripled while a constant net force is applied. We need to find how much does the acceleration decrease.

Let a' is the final acceleration,

m' = 3m



So, the final acceleration becomes (1/3) of the initial acceleration. Hence, this is the required solution.
Answer:
398.3 m, 334.2 m
Explanation:
The magnitude of the displacement vector is
v = 520 m
And its direction is
measured as north of east.
The x-component of this vector is given by:

While the y-component is given by

Answer:
r = 3519.55 m
Explanation:
We know that the acceleration of a particle in a circular motion is directed towards the center of the circumference and has magnitude:
F = rω^2
Where r is the radius of the circumference and ω is the angular velocity.
From the two acceleration vectors we find that their magnitude is
√(7^2+6^2) = √85
Therefore:
√85 m/s^2= rω^2
Now we need to calculate the angular velocity to obtain the radius. Since t2-t1 = 3s is less than one period we can be sure that the angular velocity is equals to the angle traveled between this time divided by 3 s.
The angle with respect to the x-axis for the particle at t1 and t2 is:

Therefore, the angular velocity ω is (in radians per second):

Therefore:
r = √85 / (0.0511813)^2 = 3519.55 m