Answer:
For the control experiment:
of aqueous solution of erioglaucine has absorbance of 
From Lambert-Beer's law we know:

Here; e is the molar absorptivity coefficient of erioglaucine
l = length of cuvette in which the solution is taken = 
A sorbance by the erioglaucine = total absorbance - absorbance by distilled 
So; by putting the values in the above equation; we get:

So; 
The molar absorptivity coefficient of erioglaucine is 
The absorbance of erioglaucine in distilled water (contaminated with metal ions) is: 
The absorbance of distilled water is 
So; absorbance of erioglaucine itself is : 
Again using Lambert Beer law; we get:


c = 0.198/5.65 M = 0.035 M
The concentration of the erioglaucine is 
Explanation:
Answer:
a. K⁺
b. Se²⁻
Explanation:
Isoelectronic species are those that have the same number of electrons.
a.
Ar has 18 electrons. K has 19 electrons, so when it loses 1 electron to form K⁺, it is isoelectronic with Ar.
b.
Kr has 36 electrons. Se has 34 electrons, so when it gains 2 electrons to form Se²⁻, it is isoelectronic with Kr.
Therefore carbohydrates are covalent compounds. Since electrons or more specifically valence electrons from their respective atoms are shared to form chemical bonds and acquire greater chemical stability from the bonds, this is present through out this biological macromolecule and is thus covalent.
Answer:
P₄ + 5O₂ → 2P₂O₅
Explanation:
Phosphorus burn in the presence of air and produced diphosphorus pentoxide.
Chemical equation:
P₄ + O₂ → P₂O₅
Balanced chemical equation:
P₄ + 5O₂ → 2P₂O₅
Equation is balanced because there are four phosphorus atoms ans ten oxygen atoms in both side of equation.
Coefficient with reactant and product:
P₄ 1
O₂ 5
P₂O₅ 2
Answer:
--
--
--Br--
Explanation:
The steps involved in predicting the structure of the alkyl bromide compound are outlined below.
1) An examination of the product shows that the product could only be formed by a substitution reaction.
2) The structure of the alkyl bromide compound can be then predicted by replacing the methoxide group in the product after the substitution of bromine atom. This is because the methoxide ion acts as a strong nucleophile.
Therefore, by consideration the reaction mechanisms of reactions 1 and 2, it can be predicted that the structure of the alkyl bromide compound is
--
--
--Br--
. A pictorial diagram of the alkyl bromide compound is also attached.