Answer:
B) 3.0 g/mL
Explanation:
density formula: mass/volume
15/5=3
Answer: A 59.5 degree celcius
The equation that we will use to solve this problem is :
PV = nRT where:
P is the pressure of gas = 1.8 atm
V is the volume of gas = 18.2 liters
n is the number of moles of gas = 1.2 moles
R is the gas constant = 0.0821
T is the temperature required (calculated in kelvin)
Using these values to substitute in the equation, we find that:
(1.8)(18.2) = (1.2)(0.0821)(T)
T = 332.5 degree kelvin
The last step is to convert the degree kelvin into degree celcius:
T = 332.5 - 273 = 59.5 degree celcius
Answer:
Explanation:
NaCl does not contain molecules
Answer:
c = 100 J/g.°C
Explanation:
Given data:
Mass of lime = 20 g
Heat absorbed = 80,000 J
Initial temperature = 10°C
Final temperature = 50°C
Specific heat capacity of lime = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 50°C - 10°C
ΔT = 40°C
80,000 J = 20 g×c×40°C
80,000 J = 800°C×c
c = 80,000 J /800g.°C
c = 100 J/g.°C
Answer: 5 molecules
Explanation:
2 molecules of K and 3 molecules of O