Answer:
The runner's acceleration as she sped up to the finish line is 0.95m/s²
Explanation:
Acceleration is the change in velocity of a body with respect to time. It is expressed as;
Acceleration = change in velocity/time
Change in velocity = final velocity - initial velocity
Acceleration = final velocity - initial velocity / time
Given initial speed = 8.0m/s
Final speed = 9.9m/s
Time taken = 2.0s
Acceleration = 9.9-8.0 / 2.0
Acceleration = 1.9/2
Acceleration = 0.95m/s²
Answer:
the <em>ratio F1/F2 = 1/2</em>
the <em>ratio a1/a2 = 1</em>
Explanation:
The force that both satellites experience is:
F1 = G M_e m1 / r² and
F2 = G M_e m2 / r²
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- r is the orbital radius
- M_e is the mass of Earth
Therefore,
F1/F2 = [G M_e m1 / r²] / [G M_e m2 / r²]
F1/F2 = [G M_e m1 / r²] × [r² / G M_e m2]
F1/F2 = m1/m2
F1/F2 = 1000/2000
<em>F1/F2 = 1/2</em>
The other force that the two satellites experience is the centripetal force. Therefore,
F1c = m1 v² / r and
F2c = m2 v² / r
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- v is the orbital velocity
- r is the orbital velocity
Thus,
a1 = v² / r ⇒ v² = r a1 and
a2 = v² / r ⇒ v² = r a2
Therefore,
F1c = m1 a1 r / r = m1 a1
F2c = m2 a2 r / r = m2 a2
In order for the satellites to stay in orbit, the gravitational force must equal the centripetal force. Thus,
F1 = F1c
G M_e m1 / r² = m1 a1
a1 = G M_e / r²
also
a2 = G M_e / r²
Thus,
a1/a2 = [G M_e / r²] / [G M_e / r²]
<em>a1/a2 = 1</em>
Both kinetic and potential. Kinetic as it is moving and Potential due to its relative position to the ground, in this case it is in the air, elevated from the ground.
Answer:
F = 24 N
Explanation:
In this exercise we have a bar l = 100 m with a center of gravity x = 4 m, which force is needed to lift it from the other end
Let's use the rotational equilibrium relationship, where we consider the counterclockwise rotations as positive and fix the reference system at the point closest to the center of gravity
∑ τ = 0
F l -x W = 0
F = 
let's calculate
F =
4/100 600
F = 24 N