Answer:
Ep = 3797.05 N/C in the direction leaving the charge q₂ towards point P
Explanation:
Conceptual analysis
The electric field at a point P due to a point charge is calculated as follows:
E = k*q/d²
E: Electric field in N/C
q: charge in Newtons (N)
k: electric constant in N*m²/C²
d: distance from charge q to point P in meters (m)
Data
k= 8.99*10⁹ N*m²/C²
q₁ = +13.6 x 10⁻⁹C
q₂ = +61.0*10⁻⁹C
d₁ =d₂= 33.5 cm = 0.335 m
Look at the attached graphic:
E₁: Electric Field at point P due to charge q₁. As the charge q₁ is positive (q₁+) ,the field leaves the charge
E₂: Electric Field at point P due to charge q₂. As the charge q₂ is positive (q₂+) ,the field leaves the charge
E₁ = k*q₁/d₁² = 8.99*10⁹ *13.6 *10⁻⁹/(0.335)² = 1089.45 N/C
E₂ = k*q₂/d₂²=- 8.99*10⁹ *61*10⁻⁹/(0.335)² = - 4886.5 N/C
Magnitude of the electric field at a point midway between q₁ and q₂
Ep= - 4886.5+ 1089.45 = -3797.05 N/C
Ep = 3797.5 N/C in the direction leaving the charge q₂ towards point P
When a positively charged sphere is brought near the north pole of a magnet, the positively charged sphere will be attracted to the magnet.
<h3>
Positively charged object</h3>
When a positively charged object is brought near the north pole of a magnet, the positively charged object will be attracted to the magnet beacuse of polarity.
Positively charged metals have the tendency to show the polarization of charges.
Thus, when a positively charged sphere is brought near the north pole of a magnet, the positively charged sphere will be attracted to the magnet. Also, if the south pole is brought near the sphere, the positively charged sphere will repel the magnet.
Learn more about attraction of magnet here: brainly.com/question/14749231
C. Melt 1g if solid into liquid.