Answer:
4) how charged the object creating the field is and the distance between the two charged objects
Answer:
A mixture can contain components in any proportions while a compound contains components in fixed proportions. All components in a mixture do not chemically react, while the components in a compound do react and their original properties are lost.
Answer : The energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Explanation :
First we have to calculate the moles of n-butane.

Given:
Molar mass of n-butane = 58.12 g/mole
Mass of n-butane = 58.3 g
Now put all the given values in the above expression, we get:

Now we have to calculate the energy required.

where,
Q = energy required
= enthalpy of fusion of solid n-butane = 4.66 kJ/mol
n = moles = 1.00 mol
Now put all the given values in the above expression, we get:

Thus, the energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Answer:
Water will boil at
.
Explanation:
According to clausius-clapeyron equation for liquid-vapor equilibrium:
![ln(\frac{P_{2}}{P_{1}})=\frac{-\Delta H_{vap}^{0}}{R}[\frac{1}{T_{2}}-\frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_%7B2%7D%7D%7BP_%7B1%7D%7D%29%3D%5Cfrac%7B-%5CDelta%20H_%7Bvap%7D%5E%7B0%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D-%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
where,
and
are vapor pressures of liquid at
(in kelvin) and
(in kelvin) temperatures respectively.
Here,
= 760.0 mm Hg,
= 373 K,
= 314.0 mm Hg
Plug-in all the given values in the above equation:
![ln(\frac{314.0}{760.0})=\frac{-40.7\times 10^{3}\frac{J}{mol}}{8.314\frac{J}{mol.K}}\times [\frac{1}{T_{2}}-\frac{1}{373K}]](https://tex.z-dn.net/?f=ln%28%5Cfrac%7B314.0%7D%7B760.0%7D%29%3D%5Cfrac%7B-40.7%5Ctimes%2010%5E%7B3%7D%5Cfrac%7BJ%7D%7Bmol%7D%7D%7B8.314%5Cfrac%7BJ%7D%7Bmol.K%7D%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D-%5Cfrac%7B1%7D%7B373K%7D%5D)
or, 
So, 
Hence, at base camp, water will boil at 