Answer: D.) 25.9%
Explanation:
Dinitrogen pentoxide chemical formular : N2O5
Calculating the molar mass of N2O5
Atomic mass of nitrogen(N) = 14
Atomic mass of oxygen(O) = 16
Therefore molar mass :
N2O5 = (2 × 14) + (5 × 16) = 28 + 80 = 108g/mol
Percentage amount of elements in N205:
NITROGEN (N) :
(Mass of nitrogen / molar mass of N2O5) × 100%
MASS OF NITROGEN = (N2) = 2 × 14 = 28
PERCENT OF NITROGEN : (28/108) × 100%
0.259259 × 100%
= 25.925%
= 25.9%
Covalent example ch4 where carbon is covalently bonded with all 4 hydrogens
Answer:
<u>ATGGCCTA</u>
Explanation:
For this we have to keep in mind that we have a <u>specific relationship between the nitrogen bases</u>:
-) <u>When we have a T (thymine) we will have a bond with A (adenine) and viceversa</u>.
-) <u>When we have C (Cytosine) we will have a bond with G (Guanine) and viceversa</u>.
Therefore if we have: TACCGGAT. We have to put the corresponding nitrogen base, so:
TACCGGAT
<u>ATGGCCTA</u>
<u></u>
I hope it helps!
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
Answer:
The weigth of a 90kg man standing on the moon is <u><em>147.6 N (option C)</em></u>
Explanation:
Weight is called the action exerted by the force of gravity on the body.
The mass (amount of matter that a body contains) of an object will always be the same, regardless of where it is located. Instead, the weight of the object will vary according to the force of gravity acting on it.
The formula that allows you to calculate the weight of any body is:
W = m*g
where:
- W = weight measured in N.
- m = mass measured in kg.
- g = acceleration of gravity measured in m/s². The acceleration of gravity g is the same for all objects that fall due to gravitational attraction, whatever their size or composition. For example, as an approximate value on Earth, g = 9.8 m/s².
In this case, the mass m has a value of 90 kg and the gravity g has a value of 1.64 m/s², which is the value of the acceleration of gravity of the moon. Then:
W=90 kg* 1.64 m/s²
<u><em>W= 147.6 N</em></u>
Finally, <u><em>the weigth of a 90kg man standing on the moon is 147.6 N (option C)</em></u>